Self Studies

Straight Lines Test 43

Result Self Studies

Straight Lines Test 43
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The number of ways in which $$9$$ persons can be divided into three equal groups, is
    Solution

  • Question 2
    1 / -0
    How many integers are there such that $$2 \le n \le 100$$ and the highest common factor of $$n$$ and $$36$$ is $$1$$?
    Solution
    $$36.2^{2}.3^{2}$$
    Since HCF (36,n) =1
    Therefore, n sholud not be a multiple of 2 or 3.
    $$ 2 \leq n\leq 100$$
    Total numbers = T= 1000.
    Number of numbers divisible by 2= $$N_{2}$$
    Number of numbers divisible by 3= $$N_{3}$$
    Number of numbers divisible by 6= $$N_{6}$$
    Therefore, there are $$T-N_{2}-N_{3}+N_{6}$$ total integers
    a=2
    l=1000
    d=2
    We know, $$l=a+(N_{2}-1)d.$$
    $$N_{2}=\frac{1000-2}{2}+1$$
    $$N_{2}=\frac{998}{2}+1$$
    $$N_{2}=499+1=500$$
    Similarly,
    $$N_{3}=\frac{999-3}{3}+1=333$$
    $$N_{6}=\frac{999-6}{3}+1=166$$
    Answer
    = 999-500-333+166
    = 332

  • Question 3
    1 / -0
    What is the next number in the series $$2,12,36,80,150?$$
    Solution
    $$12 - 2 = 10$$.
    $$36 - 12 = 24$$.
    $$80 - 36 = 44$$.
    $$150 - 80 = 70$$.
    Now,
    $$24 - 10 = 14$$.
    $$44 - 24 = 20$$.
    $$70 - 44 = 26$$.
    Then next difference of the difference will be $$26 + 6 = 32$$.
    Hence answer is $$150 + 70 + 32 = 252$$.
  • Question 4
    1 / -0
    The number of permutations which can be formed out of the letters of the word "SERIES" three letters together, is:
    Solution

  • Question 5
    1 / -0
    The coefficient of $$x^{18}$$ in the expansion of $$(1+x)(1-x)^{10}\{(1+x+x^2)^9\}$$ is?
    Solution
    Coefficient of $$x^{18}$$ in $$(1+x)(1-x)^{10}(1+x+x^2)^9$$
    $$=$$Coefficient of $$x^{18}$$ in $$(1-x)^2\{(1-x)(1+x+x^2)\}^9$$
    $$=$$Coefficient of $$x^{18}$$ in $$(1-x^2)(1-x^3)^9$$
    $$={^9C_6}=0=84$$.
  • Question 6
    1 / -0
    Area of the triangle with vertices $$(-2,2), (1,5)$$ and $$(6,-1)$$ is 
    Solution
    Area of triangle having vertices $$(x_1,y_1), (x_2,y_2)$$ and $$(x_3,y_3)$$ is given by
    Area $$ = \dfrac{1}{2} \times [ x_1 (y_2 - y_3) + x_2(y_3 - y_1) + x_3(y_1 - y_2)]$$

    $$=\dfrac{1}{2} [-2(5+1) + 1(-1-2)+6(2-5)]$$

    $$=\dfrac{1}{2}[-12-3-18]$$

    $$=-\dfrac{33}{2}$$

    $$\therefore$$ Area $$=\dfrac{33}{2}~sq.\, units$$
  • Question 7
    1 / -0
    The area of a triangle with vertices $$A(5,0),B(8,0)$$ and $$C(8,4)$$ in square units is 
    Solution
    Area of Triangle using coordinates of A, B and C
    Area $$ = \dfrac{1}{2} \times [ x_1 (y_2 - y_3) + x_2(y_3 - y_1) + x_3(y_1 - y_2)]$$--------(1)
    Here in our case $$ A(5,0) = (x_1, y_1)$$
                                 $$ A(8,0) = (x_2, y_2)$$
                                 $$ A(8,4) = (x_3, y_3)$$

    Substituting above values in Eq - 1, we get
    Area $$ = 0.5 [ 5(0-4) + 8(4-0) + 8(0-0)]$$
    Area $$ = 0.5 [ -20 + 32]$$
    Area $$ = 0.5 \times (12)=6$$
    $$ Area =  6 $$ square units.
  • Question 8
    1 / -0
    If $$\dfrac{1}{6!}+\dfrac{1}{7!}=\dfrac{x}{8!}$$, then $$x=?$$
    Solution
    $$\dfrac{1}{6!}+\dfrac{1}{7!}=\dfrac{x}{8!}\Rightarrow \dfrac{8\times 7}{8\times 7\times (6!)}+\dfrac{8}{8\times (7!)}=\dfrac{x}{8!}$$
    $$\Rightarrow \dfrac{56}{8!}+\dfrac{8}{8!}=\dfrac{x}{8!}\Rightarrow x=56+8=64$$.
  • Question 9
    1 / -0
    The vertices of a $$\triangle ABC$$ are $$A(3,8),B(-4,2)$$ and $$C(5,-1)$$. The area of $$\triangle ABC$$ is
    Solution
    Here $$\left( { x }_{ 1 }=3,{ y }_{ 1 }=8 \right) ;\left( { x }_{ 2 }=-4,{ y }_{ 2 }=2 \right) ;\left( { x }_{ 3 }=5,{ y }_{ 3 }=-1 \right) $$
    $$Ar\left( \triangle ABC \right) =\cfrac { 1 }{ 2 } \left[ { x }_{ 1 }\left( { y }_{ 2 }-{ y }_{ 3 } \right) +{ x }_{ 2 }\left( { y }_{ 3 }-{ y }_{ 1 } \right) +{ x }_{ 3 }\left( { y }_{ 1 }-{ y }_{ 2 } \right)  \right] $$
    $$=\cfrac { 1 }{ 2 } \left[ 3(2+1)-4(1-8)+5(8-2) \right] =\cfrac { 1 }{ 2 } (9+36+30)=\cfrac { 75 }{ 2 } =37\cfrac { 1 }{ 2 } $$
  • Question 10
    1 / -0
    The exponent of 3 in $$100!$$ is 
    Solution

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now