Given: Coordinates of points $$\displaystyle A\left( { x }_{ 1 },{ y }_{ 1 } \right) =\left( 6,3 \right) ,B\left( { x }_{ 2 },{ y }_{ 2 } \right) =\left( -3,5 \right) ,C\left( { x }_{ 3, }{ y }_{ 3 } \right) =\left( 4,-2 \right) $$ and $$\displaystyle P\left( x,y \right) .$$
We know that the area of:
$$\displaystyle\triangle PBC=\frac { 1 }{ 2 } \left[ x\left( { y }_{ 2 }-{ y }_{ 3 } \right) +{ x }_{ 3 }\left( y-{ y }_{ 2 } \right) +{ x }_{ 2 }\left( { y }_{ 3 }-y \right) \right] $$
$$\displaystyle=\frac { 1 }{ 2 } \left[ x\left( 5+2 \right) +4\left( y-5 \right) -3\left( -2-y \right) \right] $$ $$\displaystyle=\frac { 1 }{ 2 } \left[ 7x+7y-14 \right] $$
Similarly, the area of
$$\displaystyle\triangle ABC=\frac { 1 }{ 2 } \left[ { x }_{ 1 }\left( { y }_{ 2 }-{ y }_{ 3 } \right) +{ x }_{ 2 }\left( { y }_{ 3 }-{ y }_{ 1 } \right) \right] +{ x }_{ 3 }\left( { y }_{ 1 }-{ y }_{ 2 } \right) $$
$$\displaystyle=\dfrac{1}{2}[6\left( 5+2 \right) -3\left( -2-3 \right) +4\left( 3-5 \right)] =\dfrac{49}{2}$$
Therefore, the ratio of the areas of $$\triangle PAB$$ and $$\triangle ABC$$
$$\displaystyle=\frac { 7x+7y-14 }{ 49 } =\frac { 7\left( x+y-2 \right) }{ 49 } =\frac { x+y-2 }{ 7 } $$