Self Studies

Straight Lines Test 45

Result Self Studies

Straight Lines Test 45
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    In a test there were n questions. In the test $$\displaystyle 2^{n-i}$$ students gave wrong answers to i questions where $$\displaystyle i=1,2,3...,n$$. If the total number of wrong answers given is 2047 then n is
    Solution
    Total number of wrong answers $$= 2^{n-1}+2^{n-2}+...+2^{2}+2+1$$
    $$=2^{n-1}+2^{n-2}+...+2^{4}+2^{3}+2^{2}+2+1$$
    $$\Rightarrow 2^{n}-1=2043$$  [Using formula for sum of G.P]
    $$ \Rightarrow 2^{n}=2048$$
    $$ \Rightarrow 2^{n}=2^{11}$$
    $$\Rightarrow n = 11$$
    Hence, option 'B' is correct.
  • Question 2
    1 / -0
    If $$^nC_3=^nC_{13}$$, then $$^{20}C_n$$ is.
    Solution
    We know that $$ { { n }_{ C } }_{ r }=  { { n }_{ C } }_{n- r }$$

    Given, $$ { { n }_{ C } }_{3}= { { n }_{ C } }_{13} $$
    $$ => r = 3 $$ and $$ n -r = 13 $$
    $$ => n - 3 = 13 $$
    $$ => n = 16 $$

    Also, $$ { { n }_{ C } }_{ r }=\dfrac { n! }{ r!(n-r)! }  $$
    So, $$ { { 20 }_{ C } }_{ 16 }=\dfrac { 20! }{ 16!(20-16)! } = \dfrac { 20! }{ 16! \times 4! }  = \dfrac { 20 \times 19 \times 18 \times 17 \times 16! }{ 16! \times 4 \times 3 \times 2 } = 4845   $$
  • Question 3
    1 / -0
    The sides of a quadrilateral are all positive integers and three of them are $$5, 10, 20.$$ How many possible value are there for the fourth side?
    Solution

  • Question 4
    1 / -0

    Directions For Questions

    The area of a triangle whose vertices are $$\displaystyle \left( { x }_{ 1 },{ y }_{ 1 } \right) ,\left( { x }_{ 2 },{ y }_{ 2 } \right) $$ and $$\displaystyle \left( { x }_{ 3 },{ y }_{ 3 } \right) $$ is given by $$\displaystyle \Delta =\frac { 1 }{ 2 } \left| { x }_{ 1 }\left( { y }_{ 2 },{ y }_{ 3 } \right) +{ x }_{ 2 }\left( { y }_{ 3 },{ y }_{ 1 } \right) +{ x }_{ 3 }\left( { y }_{ 1 },{ y }_{ 2 } \right)  \right| $$. The points $$\displaystyle \left( { x }_{ 1 },{ y }_{ 1 } \right) ,\left( { x }_{ 2 },{ y }_{ 2 } \right) $$ and $$\displaystyle \left( { x }_{ 3 },{ y }_{ 3 } \right) $$ are collinear of $$\displaystyle \Delta =0$$

    ...view full instructions

    Determine the area of the triangle whose vertices are $$\displaystyle \left( \frac { 1 }{ 2 } ,\frac { -1 }{ 2 }  \right) ,\left( 2,\frac { -1 }{ 2 }  \right) $$ and $$\displaystyle \left( 2,\frac { \sqrt { 3 } -1 }{ 2 }  \right) $$.
    Solution

  • Question 5
    1 / -0
    A college offers $$7$$ courses in the morning and $$5$$ courses in the evening. Find the number of ways a student can select exactly one course either in the morning or in the evening.
    Solution
    $$7$$ Courses in morning 
    $$5$$ courses in evening 
    Total number of courses $$=12$$
    Selecting any one of the course 
    Number of ways $$^{ 12 }{ C }_{ 1 }$$
    $$=\cfrac { 12! }{ 1!\times 1! } $$ 
    $$=12$$ Ways 
    Therefore total ways $$=12$$
  • Question 6
    1 / -0
    If $$m$$ denotes the number of $$5$$ digit numbers if each successive digits are in their descending order of magnitude and $$n$$ is the corresponding figure. When the digits and in their ascending order of magnitude then $$(m-n)$$ has the value
    Solution
    For $$m$$,

    First we select any $$5$$ digits from $$0,1,2,...,9$$

    Number of ways $$=10C_5$$

    Now after selection there is only $$1$$ way to arrange these selected digits, i.e., in descending order.

    Therefore $$m=10C_5 \times 1=10C_5$$

    For $$n$$,

    First we select any $$5$$ digits from $$1,2,...,9$$

    We can't select zero as then it would be the first digit and then the number of won't be a $$5-$$digit one.

    Therefore number of ways $$=9C_5$$

    $$\Rightarrow n=9C_5 \times 1=9C_5$$

    $$m-n=10C_5-9C_5$$

    We know that, $$nC_r+nC_{r-1}=(n+1)C_r$$

    $$\Rightarrow (n+1)C_r-nC_r=nC_{r-1}$$

    $$\therefore 10C_5-9C_5=9C_4$$

    Hence $$m-n=9C_4$$


  • Question 7
    1 / -0
    Numbers can be classified into two categories,depending on their divisible conditions.
    They are (i) Even numbers $$(2p) \vee p \epsilon N$$ (ii) odd numbers $$(2p + 1) \vee p \epsilon N$$
    a.    $$a_1, a_2 ...... a_{2013}$$ are integers, not necessarily distinct.
    $$x = (-1)^{a_1}+(-1)^{a_2}+.....+(-1)^{a_{1006}}$$
    $$y = (-1)^{a_{1007}}+(-1)^{a_{1008}}+......+(-1)^{a_{2013}}$$

    Then which of the following is true?
    Solution

  • Question 8
    1 / -0
    If $$ { _{  }^{ n }{ C } }_{ 4 },{ _{  }^{ n }{ C } }_{ 5 }$$ and $$ { _{  }^{ n }{ C } }_{ 6 }$$ are in AP, then $$n$$ is
    Solution
    Since, $${ _{  }^{ n }{ C } }_{ 4 },{ _{  }^{ n }{ C } }_{ 5 }$$ and $$ { _{  }^{ n }{ C } }_{ 6 }$$ are in AP
    $$\therefore \quad 2{ _{  }^{ n }{ C } }_{ 5 }={ _{  }^{ n }{ C } }_{ 4 }+{ _{  }^{ n }{ C } }_{ 6 }$$
    $$\Rightarrow 2\times \cfrac { n! }{ 5!(n-5)! } =\cfrac { n! }{ 4!(n-4)! } +\cfrac { n! }{ 6!(n-6)! } $$
    $$\Rightarrow \cfrac { 2 }{ 5(n-5) } =\cfrac { 1 }{ (n-4)(n-5) } +\cfrac { 1 }{ 30 } $$
    $$ \Rightarrow \cfrac { 2 }{ 5(n-5) } =\cfrac { 30+{ n }^{ 2 }-9n+50 }{ 30(n-4)(n-5) } $$
    $$\Rightarrow 12(n-4)={ n }^{ 2 }-9n+50$$
    $$\Rightarrow { n }^{ 2 }-21n+98=0$$
    $$\Rightarrow (n-14)(n-7)=0\quad $$
    $$\Rightarrow n=7,14$$
  • Question 9
    1 / -0
    Two classrooms A and B having capacity of $$25$$ and $$(n-25)$$ seats respectively. $$A_n$$ denotes the number of possible seating arrangements of room $$'A'$$, when 'n' students are to be seated in these rooms, starting from room $$'A'$$ which is to be filled up to its capacity. If $$A_n-A_{n-1}=25!(^{49}C_{25})$$ then 'n' equals:
    Solution
    Given $$A_n=nC_{25} \cdot 25!$$

    $$A_{n-1}={n-1}C_{25} \cdot 25!$$

    Hence $$nC_{25} \cdot 25! - (n-1)C_{25} \cdot 25!=25! 49C_{25}$$

    $$\Rightarrow (n-1)C_{25}+(n-1)C_{24}-(n-1)C_{25}=49C_{24}$$

    $$\Rightarrow n-1=49$$

    $$\Rightarrow n=50$$
  • Question 10
    1 / -0
    The line $$\displaystyle 3x+2y=24$$ meets x-axis at A and y-axis at B. The perpendicular bisector of $$\displaystyle \overline { AB } $$ meets the line through (0, -1) and parallel to x-axis at C. Find the area of $$\displaystyle \Delta ABC$$.
    Solution

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now