Self Studies

Straight Lines Test 49

Result Self Studies

Straight Lines Test 49
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The number of 5 letter words formed  using letters of word "CALCULUS" is  
    Solution

  • Question 2
    1 / -0
    The area of the triangle whose co-ordinates are $$(2012, 7), (2014, 7)$$ and $$(2014, a)$$ is $$1 \,sq$$ unit. The sum of possible values of $$a$$ is
    Solution

  • Question 3
    1 / -0
    $$40280625, 732375, 16275, 465, 18.6, 1.24,?$$
    Solution
    $$40280625, 732375,16275,465,18.6,1.24$$
    $$\cfrac{40280625}{732375}=55$$
    $$\cfrac{732375}{16275}=45$$
    $$\cfrac{16275}{465}=35$$
    $$\cfrac{465}{18.6}=25$$
    $$\cfrac{18.6}{1.24}=15$$
    $$\cfrac{1.24}{x}=5$$
    $$x=0.248$$

  • Question 4
    1 / -0
    $$\dfrac { 7 } { 11 } : \dfrac { 336 } { 110 } : ? \quad : \quad \dfrac { 720 } { 272 }$$
    Solution

  • Question 5
    1 / -0
    A line L passes through the points $$ (1,1)  $$and $$ (2,0)  $$ and another line $$  L^{\prime}  $$ passes through $$ \left(\frac{1}{2}, 0\right)  $$ and perpendicular to L.Then the area of the triangle formed by the lines $$  L, L^{\prime}  $$ and $$  y- $$ axis, is
    Solution
    $$\textbf{Hint: Product of slopes of two perpendicular lines is -1.}$$

    $$\textbf{Step 1: Find the equation of two lines.}$$

                    $$\text{Using two points form, equation of line L is given by,}$$

                    $$\Rightarrow y-0=\dfrac{0-1}{2-1}(x-2)$$

                    $$\Rightarrow y=-(x-2)$$

                    $$\Rightarrow x+y=2.......(1)$$

                    $$\text{Slope of L = - 1}$$

                    $$\text{L and }$$ $$\text{L' are perpendicular to each other}$$ 

                    $$\text{Slope of L' =}$$ $$\dfrac{-1}{-1}=1$$

                    $$\text{Using point slope form, equation of line L' is given by,}$$

                    $$\Rightarrow y-0=1(x-\dfrac{1}{2})$$

                    $$\Rightarrow 2x-2y=1 ......(2)$$

    $$\textbf{Step 2: Find the required area.}$$

                    $$\text{Let, L and L' intersect each other at B.}$$

                    $$\text{Solving eq(1) and eq(2) , we get,}$$

                    $$\Rightarrow A(x,y)=\left(\dfrac{5}{4},\dfrac{3}{4}\right)$$

                    $$\text{The intersection points of lines L and L' with y-axis are B(0,2) and C}$$$$\left(0,-\dfrac{1}{2}\right)$$ $$\text{respectively.}$$

                    $$\text{Using distance formula,}$$
                    $$AB=\sqrt{\left(0-\dfrac{5}{4}\right)^2+\left(2-\dfrac{3}{4}\right)^2}=\dfrac{5}{4}\sqrt2$$

                    $$\text{And,}$$
                    $$AC=\sqrt{\left(\dfrac{5}{4}-0\right)^2+\left(\dfrac{3}{4}+\dfrac{1}{2}\right)^2}=\dfrac{5}{4}\sqrt2$$

                    $$\text{Area of the triangle}$$ $$=\dfrac{1}{2}\times AB\times AC=\dfrac{1}{2}\times\dfrac{5}{4}\sqrt2\times\dfrac{5}{4}\sqrt2\ sq.unit $$

                                                                                          $$=\dfrac{25}{16}\ sq.unit$$

    $$\textbf{Hence, the correct option is D.}$$
  • Question 6
    1 / -0
    If  $$A =  (-3,4) , B =(-1,-2) , C=(5,6) D= (x,-4) $$  are the vertices of a quadrilateral such that area triangle $$ABD= 2 \times$$ (area of a triangle $$ACD$$), then $$x =$$
    Solution

  • Question 7
    1 / -0
    The area of the triangle formed by the lines $$x=0;y=0$$ and $$x\sin { { 18 }^{ 0 } } +y\cos { { 36 }^{ 0 } } +1=0$$ is 
    Solution

  • Question 8
    1 / -0
    If the tangent at $$\theta =\frac { \pi  }{ 4 } $$ to the curve $$x=a\cos ^{ 3 }{ \theta  } ,y=a\sin ^{ 3 }{ \theta  } $$ meets the x and y axes in A and B then the area of the triangle OAB is
    Solution

  • Question 9
    1 / -0
    Find the number .

    Solution
    $$ \begin{array}{l} 4^{3}+7^{3}+3^{3}=434 \\ \text { similarly, } \\ 6^{3}+5^{3}+2^{3}=349 \\ \Rightarrow \text { ? }=8^{3}+4^{3}+2^{3} \\ \Rightarrow \text { ? }=584 \\ \text { option } D \text { is correct. } \end{array} $$
  • Question 10
    1 / -0
     There is a specific relationship between the numbers that are given in the following figures. On the basis of the relationship choose the correct alternative to replace the question mark.

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now