Self Studies

Permutations and Combinations Test 16

Result Self Studies

Permutations and Combinations Test 16
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    A point $$(a, b)$$ is called a good point if both $$a$$ and $$b$$ are integers. Number of good points on the curve $$xy$$ $$=$$ $$225$$ are
    Solution
    The order pair $$(x, y)$$ satisfying $$xy=225$$ are $$(1, 225), (3, 75) (5, 45), (9, 25), (15, 15)$$. Order can be changed in the first four pairs and both $$x$$ and $$y$$ can be negative also, so the no. of pairs $$=2(2\times 4+1)=18$$
  • Question 2
    1 / -0
     In a class there are $$10$$ boys and $$8$$ girls. The teacher wants to select either a boy or a girl to represent the class in a function. The number of ways the teacher can make this selection.
    Solution
    There are $$10$$ boys and $$8$$ girls in a class. 
    The teacher wants to select just one to represent the class. 
    One boy out of $$10$$ can be selected in $$10$$ ways. 
    Similarly, one girl out of $$8$$ can be selected in $$8$$ ways. 
    So, if he has to select either a boy OR a girl, he can do it in total $$10+8$$ number of ways. i.e $$18$$
  • Question 3
    1 / -0
    The number of ways in which 7 persons can be arranged around a circle is:
    Solution
    $$no$$ of ways of arranging n persons in a circle is $$(n-1)!=(7-1)=6!=720$$

  • Question 4
    1 / -0
    The sum of the value of the digits at the tens place of all the numbers formed with the help of $$3, 4, 5, 6$$ taken all at a time is
    Solution
    Total number of numbers formed with the digits $$3,4,5,6$$ is $$4!$$ $$=$$ $$24$$
    If a digit is fixed in tens place, number of numbers formed will be $$6$$
    i.e for every digit in tens place there will be $$6$$ numbers formed
    Now, sum of the digits $$ = (6\times3)+(6\times4)+(6\times5)+(6\times6) $$ $$ = 108 $$.
    Now its value in tens place $$= 108\times10=1080 $$.
  • Question 5
    1 / -0
    Three Men have $$4$$ coats $$5$$ waist Coats, and $$6$$ caps. The number of ways they can wear them is
    Solution
    Coats $$\rightarrow  ^4P_3$$
    4 3 2
    Waist Coats $$\rightarrow   ^5P_3$$
    5 4 3
    Caps $$\rightarrow   ^6P_3$$
    6 5 4
    Total no. of ways of wearing them= $$ ^4P_3$$ x $$ ^5P_3$$ x $$ ^6P_3$$
  • Question 6
    1 / -0
    The points $$A (2, 9), B (a, 5)$$ and $$C (5, 5) $$ are the vertices of a triangle $$ABC$$ right angled at $$B$$. Find the values of  $$a$$ and hence the area of $$\Delta $$ $$ABC$$.
    Solution
    Given that the vertices of the $$\Delta ABC$$ are $$A\left( { x }_{ 1 },{ y }_{ 1 } \right) =\left( 2,9 \right) , B\left( { x }_{ 2 },{ y }_{ 2 } \right) =\left( a,5 \right) $$ and $$C\left( { x }_{ 3 },{ y }_{ 3 } \right) =\left( 5,5 \right) and \angle B={ 90 }^{ o }$$. 
    So, $$AC$$ is the hypotenuse.
    $$ \therefore$$ by Pythagoras theorem, we have 
    $$ { AB }^{ 2 }+{ BC }^{ 2 }={ AC }^{ 2 }$$    .........(i)
    Now, by distance formula 
    $$d=\sqrt { { \left( { x }_{ 1 }-{ x }_{ 2 } \right)  }^{ 2 }+{ \left( { y }_{ 1 }-y_{ 2 } \right)  }^{ 2 } } $$ 
    So, $$AB=\sqrt { { \left( { x }_{ 1 }-{ x }_{ 2 } \right)  }^{ 2 }+{ \left( { y }_{ 1 }-y_{ 2 } \right)  }^{ 2 } } =\sqrt { { \left( 2-a \right)  }^{ 2 }+{ \left( 9-5 \right)  }^{ 2 } } =\sqrt { { a }^{ 2 }-4a+20 } $$, 
    $$BC=\sqrt { { \left( { x }_{ 3 }-{ x }_{ 2 } \right)  }^{ 2 }+{ \left( { y }_{ 3 }-y_{ 2 } \right)  }^{ 2 } } =\sqrt { { \left( 5-a \right)  }^{ 2 }+{ \left( 5-5 \right)  }^{ 2 } } =\sqrt { { a }^{ 2 }-10a+25 } $$ and 
    $$AC=\sqrt { { \left( { x }_{ 3 }-{ x }_{ 1 } \right)  }^{ 2 }+{ \left( { y }_{ 3 }-y_{ 1 } \right)  }^{ 2 } } =\sqrt { { \left( 5-2 \right)  }^{ 2 }+{ \left( 5-9 \right)  }^{ 2 } } $$ units $$=\sqrt { 25 } $$ units.
    $$ \therefore$$ by (i), we get
    $${ a }^{ 2 }-4a+20{ +a }^{ 2 }-10a+25=25$$
    $$ \Rightarrow { a }^{ 2 }-7a+10=0$$
    $$ \Rightarrow a=5,2$$ 
    We reject $$a=5$$, since $$B$$ and $$C$$ will coincide in that case and $$\Delta ABC$$ will collapse. 
    So, $$a=2. i.e. AB=\sqrt { { a }^{ 2 }-4a+20 } =\sqrt { 4-8+20 } 3$$ units $$=43$$ units
    $$ BC=\sqrt { { a }^{ 2 }-10a+25 } =\sqrt { 4-20+25 } 3$$ units $$=3$$ units.
    Now,
    We know that the area of the triangle whose vertices are $$\displaystyle (x_{1},y_{1}),(x_{2},y_{2}),$$ and $$(x_{3},y_{3})$$ is $$\cfrac{1}{2}\left | x_{1}(y_{2}-y_{3})+x_{2}(y_{3}-y_{1}) +x_{3}(y_{1}-y_{2})\right |$$
    Therefore, required area is $$6$$ square units.
  • Question 7
    1 / -0
    Find the area of triangle having vertices are $$A (3, 1), B (12, 2)$$ and $$C (0, 2)$$.
    Solution

    The  given  points  are  $$A\left( { x }_{ 1 },{ y }_{ 1 } \right) =\left( 3,1 \right) ,  B\left( { x }_{ 2 },{ y }_{ 2 } \right) =\left( 12,2 \right)   \&   C\left( { x }_{ 3 },{ y }_{ 3 } \right) =\left( 0,2 \right)$$

    Let  us  obtain  $$ar\Delta ABC$$  by  applying  the  area  formula.

    $$ ar\Delta =\dfrac { 1 }{ 2 } \left\{ { x }_{ 1 }\left( { y }_{ 2 }-{ y }_{ 3 } \right) +{ x }_{ 2 }\left( { y }_{ 3 }-{ y }_{ 1 } \right) +{ x }_{ 3 }\left( { y }_{ 1 }-{ y }_{ 2 } \right)  \right\}$$

    $$\Rightarrow ar\Delta =\dfrac { 1 }{ 2 } \left\{ 3\left( 2-2 \right) +12\left( 2-1 \right) +0\left( 1-2 \right)  \right\}$$ units $$=6$$ units

    $$\therefore   ar\Delta =6$$ units 

    Hence, option B.

  • Question 8
    1 / -0
    The area of triangle ABC (in sq. units) is :

    Solution
    The area of a triangle is given as:
    Area $$=\dfrac { 1 }{ 2 } \left[ { x }_{ 1 }({ y }_{ 2 }-{ y }_{ 3 })+{ x }_{ 2 }({ y }_{ 3 }-{ y }_{ 1 })+{ x }_{ 3 }({ y }_{ 1 }-{ y }_{ 2 }) \right] $$
    the given points are $$ A(1,3),~B(-1,0) $$and $$C(4,0)$$
    by Substituting ,
    $$\text{Area} =\dfrac { 1 }{ 2 } \left[ 1(0-0)+(-1)(0-3)+4(3-0) \right] \\ =\dfrac { 1 }{ 2 } \left[ 3+12 \right] =\dfrac { 15 }{ 2 } =7.5$$ 
    $$\therefore$$ Area of the given triangle ABC is $$7.5$$ sq. units
  • Question 9
    1 / -0
    The area of a triangle with vertices $$(a, b + c), (b, c + a)$$ and $$(c, a + b)$$ is
    Solution
    The area of $$\triangle ABC$$ with vertices $$A\equiv(x_1, y_1)$$, $$B\equiv(x_2, y_2)$$ and $$C\equiv(x_3, y_3)$$ is given as,
    $$A(\triangle ABC) = \left|\dfrac12[x_1(y_3-y_2) +x_2(y_1 - y_3) + x_3(y_2-y_1) ]\right|$$
    In this problem,
    $$A(\triangle ABC) = \left|\dfrac12[a(a+b-(c+a)) +b(b+c - (a+b)) + c(c+a-(b+c)) ]\right|$$
    $$\therefore A(\triangle ABC) = \left|\dfrac12[ab-ac + bc-ba + ca-cb]\right|$$
    $$\therefore A(\triangle ABC) = 0$$
    Hence, the correct Option is D.
  • Question 10
    1 / -0
    Area of the triangle formed by the points P(-1.5, 3), Q(6, -2) and R(-3, 4) is 0.
    Solution
    We know that the area of the triangle whose vertices are $$\displaystyle (x_{1},y_{1}),(x_{2},y_{2}),$$ and $$(x_{3},y_{3})$$ is $$\cfrac{1}{2}\left | x_{1}(y_{2}-y_{3})+x_{2}(y_{3}-y_{1}) +x_{3}(y_{1}-y_{2})\right |$$
    Given $$P(-1.5, 3), Q(6, -2)$$ and $$R(-3, 4)$$
    Therefore, area is given by
    $$= \frac{1}{2}\times[(-1.5)(-2-4) + 6(4-3)+(-3)(3+2)]$$
    $$= \frac{1}{2}\times(9 +6-15)$$
     $$= 0$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now