Self Studies

Permutations and Combinations Test 42

Result Self Studies

Permutations and Combinations Test 42
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Find the missing number from the given alternatives.

    Solution
    $$ 13\quad\quad 39\\26\quad\quad 78\\?\quad\quad ?$$
    The pattern satisfies
    $$x\quad\quad 3x$$
    Therefore correct option is 
    $$52\quad\quad 156$$
  • Question 2
    1 / -0
    In the given figure (not drawn to scale), the coordinates of P, Q and R are (3, 0) (0, 5) and (0, -5) respectively. Find the area of $$\Delta PQR$$.

    Solution

  • Question 3
    1 / -0
    $$8, 31, 122, 485, 1936, 7739, ?$$
    Solution

  • Question 4
    1 / -0
    $$499, 622, 868, 1237, 1729, 2344, ?$$
    Solution
    $$499, 622, 868, 1237, 1729, 2344,$$ ______
    $$499+1\times 123=499+123=622$$
    $$622+2\times 123=622+146=868$$
    $$868+3\times 123=868+369=1237$$
    $$1237+4\times 123=1237+492=1729$$
    $$1729+5\times 123=1729+615=2344$$
    $$2344+6\times 123=2344+738=3082$$.

  • Question 5
    1 / -0
    Six people are going to sit in a row on a bench. $$A$$ and $$B$$ are adjacent, $$C$$ does not want to sit adjacent to $$D.E$$ and $$F$$ can sit anywhere. Number of ways in which these six people can be seated is 
    Solution
    A, B, C, D, E, F
    Consider AB as group so we have AB, C, D, E, F.
    We have totally $$5$$
    No. of ways$$(w_1)=5!\times 2$$
    $$=240$$
    Let CD are adjacent now AB, CD, E, F
    No. of ways$$(w_2)=4!2!2!$$
    $$=96$$
    Total no. of ways
    $$W=w_1-w_2$$
    $$=240-96$$
    $$=144$$.

  • Question 6
    1 / -0
    Find : $$12,15,21,24,30,33 , ? , ?$$
    Solution
    $$12,15,21,24,30,33,?,?$$
    $$12$$
    $$12 + 3 = 15$$
    $$15+3\times 2=21$$
    $$21+3=24$$
    $$24+3\times 2=30$$
    $$30+3=33$$
    $$33+3\times 2=39$$
    $$39+3=42$$
  • Question 7
    1 / -0
    Find the missing number :

    Solution
    $$\textbf{Step 1: Observe the numbers opposite to each other}$$
                    $$ \text{We can see that the number opposite to 315 is 21. Also, } \dfrac{315}{21}=15$$
                    $$\text{Hence, we can say the missing number has at least one factor of 15 }$$
                    $$\text{We see the missing number is opposite to 15}$$
                    $$\text{Also, } 15\times15=225$$
    $$\textbf{Step 2: Verification}$$
                    $$\text{Let the missing number be x.}$$
                    $$\text{ATQ, }$$
                    $$\Rightarrow 21+15+x=261$$
                    $$\Rightarrow x=261-21-15$$
                    $$x=225$$
                    $$\text{Hence, it is verified that x=225}$$
    $$\textbf{Thus, the missing number is D 225.}$$
  • Question 8
    1 / -0
    $$23,29,47,75 , ?$$
    Solution
    $$2\underbrace { 3\quad ,\quad 2 } \underbrace { 9\quad ,\quad 4 } \underbrace { 7\quad ,\quad 7 } \underbrace { 5\quad ,\quad ? } \quad =75+35$$
             $$6$$             $$18$$            $$28$$            $$35$$
    $$\left( 2\times 3 \right) \uparrow $$  $$\left( 2\times 9 \right) \uparrow $$  $$\left( 4\times 7 \right) \uparrow $$  $$\left( 7\times 5 \right) \uparrow $$ $$=110$$
  • Question 9
    1 / -0
    $$16,40,100,250 , ?$$
    Solution

    $$16,40,100,250,?$$

    $${ \underline { 4 }  }^{ 2 },\underline { 4 } \times \underline { \left( 10 \right)  } ,{ \left( 10 \right)  }^{ 2 },\underline { 10 } \times \left( 25 \right) ,{ \left( 25 \right)  }^{ 2 }$$

    $$16,40,100,250,625$$.

  • Question 10
    1 / -0
    Find the missing number

    Solution
    $$\textbf{Step 1: Observe the numbers opposite to each other}$$
                    $$ \text{We can see that the number opposite to 196 is 14. Also, } \dfrac{196}{14}=14$$
                    $$\text{Hence, we can say the missing number has at least one factor of 14}$$
                    $$\text{We see the missing number is opposite to 154}$$
                    $$\text{Also, } 14\times11=154$$
                    $$\text{Hence, let's assume the missing number is 11}$$
    $$\textbf{Step 2: Verification}$$
                    $$\text{Let the missing number be x.}$$
                    $$\text{According to the question, }$$
                    $$\Rightarrow 14+196+x=221$$
                    $$\Rightarrow x=221-14-196$$
                    $$x=11$$
                    $$\text{Hence, it is verified that x=11}$$
    $$\textbf{Thus, the missing number is (A) 11.}$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now