Self Studies
Selfstudy
Selfstudy

Permutations and Combinations Test 47

Result Self Studies

Permutations and Combinations Test 47
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0

    Directions For Questions

    The area of a triangle whose vertices are $$\displaystyle \left( { x }_{ 1 },{ y }_{ 1 } \right) ,\left( { x }_{ 2 },{ y }_{ 2 } \right) $$ and $$\displaystyle \left( { x }_{ 3 },{ y }_{ 3 } \right) $$ is given by $$\displaystyle \Delta =\frac { 1 }{ 2 } \left| { x }_{ 1 }\left( { y }_{ 2 },{ y }_{ 3 } \right) +{ x }_{ 2 }\left( { y }_{ 3 },{ y }_{ 1 } \right) +{ x }_{ 3 }\left( { y }_{ 1 },{ y }_{ 2 } \right)  \right| $$. The points $$\displaystyle \left( { x }_{ 1 },{ y }_{ 1 } \right) ,\left( { x }_{ 2 },{ y }_{ 2 } \right) $$ and $$\displaystyle \left( { x }_{ 3 },{ y }_{ 3 } \right) $$ are collinear of $$\displaystyle \Delta =0$$

    ...view full instructions

    Determine the area of the triangle whose vertices are $$\displaystyle \left( \frac { 1 }{ 2 } ,\frac { -1 }{ 2 }  \right) ,\left( 2,\frac { -1 }{ 2 }  \right) $$ and $$\displaystyle \left( 2,\frac { \sqrt { 3 } -1 }{ 2 }  \right) $$.
    Solution

  • Question 2
    1 / -0
    In how many ways can $$12$$ people be seated around a table?
    Solution
    Number of people $$=12$$
    When in circular arrangement 
    The possible number of arrangements of $$n$$ objects around a table (circular) $$(n-1)!$$
    Therefore number of ways of arranging $$12$$ people 
    $$\Rightarrow (12-1)!$$
    $$\Rightarrow 11!$$ Ways 
    Therefore number of ways $$=11!$$
  • Question 3
    1 / -0
    How many necklaces of $$10$$ beads each can be made from $$20$$ beads of different colors?
    Solution
    $$10$$ Beads $$\longrightarrow $$ Each necklece 
    $$20$$ Beads total 
    Number of ways of arranging $$20$$ Beads in circular Form $$=19!$$
    There should be $$2$$ sets of necklace of $$10$$ beads each 
    Number of ways $$=10!\times 10!$$
    Total ways 
    $$=\cfrac { 19! }{ 10!\times 10! } \\ =\cfrac { 19! }{ { (10!) }^{ 2 } } $$
  • Question 4
    1 / -0
    Numbers can be classified into two categories,depending on their divisible conditions.
    They are (i) Even numbers $$(2p) \vee p \epsilon N$$ (ii) odd numbers $$(2p + 1) \vee p \epsilon N$$
    a.    $$a_1, a_2 ...... a_{2013}$$ are integers, not necessarily distinct.
    $$x = (-1)^{a_1}+(-1)^{a_2}+.....+(-1)^{a_{1006}}$$
    $$y = (-1)^{a_{1007}}+(-1)^{a_{1008}}+......+(-1)^{a_{2013}}$$

    Then which of the following is true?
    Solution

  • Question 5
    1 / -0
    If $$ { _{  }^{ n }{ C } }_{ 4 },{ _{  }^{ n }{ C } }_{ 5 }$$ and $$ { _{  }^{ n }{ C } }_{ 6 }$$ are in AP, then $$n$$ is
    Solution
    $$\textbf{Step 1: Find the value of n}$$

                    $$\text{If a,b,c are in A.P,then}$$

                    $$2b=a+c$$

                    $$\text{So applying the same conditions, we have}$$

                    $$\Rightarrow$$ $$2 \times\left({ }^{n} c_{5}\right)=\left({ }^{n} C_{6}\right)+\left({ }^{n} C_{4}\right)$$

                    $$\text{We know that,}$$

                    $${ }^{n} C_{r} = \dfrac{ n !}{r !(n-r) !}$$

                    $$\Rightarrow$$$$\dfrac{2 \times n !}{5 !(n-5) !}=\dfrac{n !}{6 !(n-6) !}+\dfrac{n !}{4 !(n-4) !}$$

                    $$\Rightarrow \dfrac{2}{5 !(n-5) !}=\dfrac{1}{6(n-6) !}+\dfrac{1}{4 !(n-4) !} $$         

                    $$\Rightarrow \dfrac{2}{5 !(n-5)(n-6) !}=\dfrac{1}{6 !(n-6) !}+\dfrac{1}{4 !(n-4)(n-5)(n-6)!} $$

                    $$ \Rightarrow \dfrac{2}{5 !(n-5)}=\dfrac{1}{6 !}+\dfrac{1}{4 !(n-4)(n-5)} $$               

                    $$\Rightarrow \dfrac{2}{5 \times 4 ! \times(n-5)}=\dfrac{1}{6 \times 5 \times 4 !}+\dfrac{1}{4 !(n-4)(n-5)} $$

                    $$=\dfrac{2}{5 \times(n-5)}=\dfrac{1}{6 \times 5}+\dfrac{1}{(n-4)(n-5)}$$                  

                    $$\Rightarrow \dfrac{2}{5 \times(n-5)}-\dfrac{1}{(n-4)(n-5)}=\dfrac{1}{6 \times 5}$$      

                    $$\Rightarrow 12 n-78=n^{2}-9 n+20$$

                    $$\Rightarrow n^2-21n+98=0$$

                    $$\Rightarrow (n-7)(n-14)=0$$

                    $$\therefore n=14$$ $$\text{(or)}$$ $$n=7$$

    $$\textbf{Hence, option A is correct.}$$
  • Question 6
    1 / -0
    In how many ways can $$8$$ persons consisting of $$4$$ men and $$4$$ women can be seated round a table if no two men are to be in adjacent seats.
    Solution
    $$8$$ Persons 
    Let the men be seated first 
    $$=(4-1)!\\ =3!\\ =6$$
    Number of place for women $$=4$$
    $$4$$ women are there 
    Therefore number of ways $$=4!$$
    Total ways $$=4!\times 3!$$

  • Question 7
    1 / -0
    If $$^nC_3=^nC_{13}$$, then $$^{20}C_n$$ is.
    Solution
    We know that $$ { { n }_{ C } }_{ r }=  { { n }_{ C } }_{n- r }$$

    Given, $$ { { n }_{ C } }_{3}= { { n }_{ C } }_{13} $$
    $$ => r = 3 $$ and $$ n -r = 13 $$
    $$ => n - 3 = 13 $$
    $$ => n = 16 $$

    Also, $$ { { n }_{ C } }_{ r }=\dfrac { n! }{ r!(n-r)! }  $$
    So, $$ { { 20 }_{ C } }_{ 16 }=\dfrac { 20! }{ 16!(20-16)! } = \dfrac { 20! }{ 16! \times 4! }  = \dfrac { 20 \times 19 \times 18 \times 17 \times 16! }{ 16! \times 4 \times 3 \times 2 } = 4845   $$
  • Question 8
    1 / -0
    If $$^{19}C_r$$ and $$^{19}C_{r-1}$$ are in the ratio 2:3, then find $$^{14}C_r$$
    Solution
    We know that, $$ { { n }_{ C } }_{ r }=\dfrac { n! }{ r!(n-r)! } $$

    Given, $$ \dfrac { { { 19 }_{ C } }_{ r } }{ { { 19 }_{ C } }_{ r-1 } } =\quad \dfrac { 2 }{ 3 } $$

    $$ =>\dfrac { \dfrac { 19! }{ r!(19-r)! }  }{ \dfrac { 19! }{ (r-1)!(19-r+1)! }  } =\quad \dfrac { 2 }{ 3 } $$

    $$ => \dfrac { (r-1)!(20-r)! }{ r!(19-r)! } =\quad \dfrac { 2 }{ 3 } $$

    $$ =\dfrac { (r-1)!\times (20-r) \times (19-r)! }{ r\quad \times (r-1)!\times (19-r)! } =\quad \dfrac { 2 }{ 3 } $$
    $$ => \dfrac { 20-r }{ r\quad  } =\quad \dfrac { 2 }{ 3 } $$
    $$ => r = 12 $$

    So,
    $$ { { 14 }_{ C } }_{ 12 }=\dfrac { 14! }{ 12!(14-12)! } =\dfrac { 14! }{ 12!(2)! } =\dfrac { 14\times 13\times 12! }{ 12!\times 2 } =\quad 7\times 13=91 $$
  • Question 9
    1 / -0
    If j, k, and n are consecutive integers such that $$0 < j < k < n$$ and the units (ones) digit of the product jn is 9, what is the units digit of k ? 
    Solution

    There are only a few ways you can make a product have a units digit of $$9$$. Either both numbers you’re multiplying have to be $$3$$, or one has to be $$1$$ and one has to be $$9$$. Since we’re dealing with consecutive integers, $$j$$ and $$n$$ can’t both end in $$3$$, so they’re going to have to end in $$1$$ and $$9$$. 

    It’s important to remember that although we only really care about the units digits in this problem, we’re dealing with numbers that might (or in fact, must) be $$2$$ or more digits. That’s why you can have $$k's$$ units digit be $$0$$. 

    Say $$j= 19$$, $$k= 20$$, and $$n= 21$$. Then $$jn = (19)(21) = 399$$ (units digit is $$9$$), and the units digit of $$k = 0$$.

    Hence option A is correct. 

  • Question 10
    1 / -0
    The line $$\displaystyle 3x+2y=24$$ meets x-axis at A and y-axis at B. The perpendicular bisector of $$\displaystyle \overline { AB } $$ meets the line through (0, -1) and parallel to x-axis at C. Find the area of $$\displaystyle \Delta ABC$$.
    Solution

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now