Let equimolar metal carbonates have mole be $$n$$
Let Metal be $$M_1$$ and $$M_2$$
As $${ M }_{ 1 }{ CO }_{ 3 }\underrightarrow { \Delta } { M }_{ 1 }O+{ CO }_{ { 2 }_{ (g) } }\uparrow $$
$${ M }_{ 2 }{ CO }_{ 3 }\underrightarrow { \Delta } { M }_{ 2 }O+{ CO }_{ { 2 }_{ (g) } }\uparrow $$
Let molecular wt. of $${ M }_{ 1 }\rightarrow { w }_{ 1 }$$
molecular wt. of $${ M }_{ 2 }\rightarrow { w }_{ 2 }$$
for % composition of metal $${ M }_{ 1 }=\cfrac { n{ w }_{ 1 } }{ n\left( { w }_{ 1 }+60 \right) +n\left( { w }_{ 2 }+60 \right) } =0.135\quad -(1)$$
$$\Rightarrow$$ we have $$n\left( { w }_{ 1 }+60 \right) +n\left( { w }_{ 2 }+60 \right) =2.58gm\quad -(2)$$
$$CO_2$$ librated$$=2.58-1.35=1.23gm$$
$$\therefore$$ wt. of $$CO_2$$ in mixture$$=n(44)+n(44)$$
$$=88n\quad gm$$
$$88n\quad gm=1.23gm$$
$$n=\cfrac {1.23}{88} =0.01397$$
Put $$n=0.01397$$ mol in $$(1)$$ we get
$$\cfrac {0.01397 w_1}{2.58} =0.135$$
$$[w_1 =24.93gm]$$
From $$(2)$$
$$n(w_2 +w_1 +120)=2.58$$
$$0.01397(24.93+ w_2 +120)=2.58$$
$$2.0246+0.01397 w_2 =2.58$$
$$[w_2 =39.75gm]$$
% composition of $$M_2 =\cfrac { n{ w }_{ 2 } }{ 2.58 } =\cfrac { 0.01397\times 39.75 }{ 2.58 } =0.215$$
$$=21.5$$%