$$ \text { Balance equation } $$
$$ \text { Cu }+ 4 \mathrm{H} \mathrm{N} \mathrm{O}_{3} \longrightarrow \mathrm{Cu}\left(\mathrm{N} \mathrm{O}_{3}\right)_{2}+2 \mathrm{~N} \mathrm{O}_{2}+2 \mathrm{H}_{2} \mathrm{O} $$
$$ P V= n R T $$
$$ \begin{array}{l} V=1.04 L \\ P=atm \\ T=25^{\circ} C=290 K \\ R=0.0821 \text { . atm } / \mathrm{mol}^{-1} \mathrm{k}^{-1} \end{array} $$
$$ \begin{aligned} \text { moles of } \mathrm{NO}_{2} &=\dfrac{1 \times 1.04}{0.0821 \times 298} \\ &=0.0425 \end{aligned} $$
$$ \begin{aligned} \text { moles of } C u=\dfrac{1}{2} \times & \text { mole of } NO_2 \\ =& \dfrac{1}{2} \times 0.0425 \\ &=0.02125 \end{aligned} $$
$$ \begin{aligned} \text { weight of } Cu &=\operatorname{mole} x \text { molecular weight } \\ &=0.02125 \times 63.5 . \\ &=1.3496 g \end{aligned} $$
$$ \begin{aligned} \text { weight of } Zn=& \text { weight of brass - weight of Cu} \\ =& 2-1.3496 \\ &=0.6504 \end{aligned} $$
$$ \text { more of } Z n=\dfrac{0.6504}{65.4} $$
$$ \text { moles of } \mathrm{N} \mathrm{H}_4\mathrm{~N}O_3 \mathrm{~L}=\dfrac{2}{1} \dfrac{1}{4} \times \text { mole of } Z n$$
$$ =\dfrac{1}{2} \times \dfrac{0.6504}{65.4}=2.6 \times 10^{-3} $$
$$ \begin{aligned} \text { weight of } NH_4NO_3 &=\text { mole } \times \text { molecular weight } NH_4NO_3 \\ &=2.6 \times 10^{-3} \times 80 \\ &=0.2018 \mathrm{~g} \end{aligned} $$