Solution:- (B) $$\cfrac{{h}^{2}}{16 {\pi}^{2} m a_o^2}$$
According to Bohr's model of an atom, the potential energy of electron having charge $$-e$$ is given as-
$$P.E. = \cfrac{1}{4 \pi {\epsilon}_{0}} \cfrac{e}{r} \left( -e \right)$$
$$\Rightarrow P.E. =- \cfrac{1}{4 \pi {\epsilon}_{0}} \cfrac{{e}^{2}}{r}$$
$$\because r = \cfrac{{\epsilon}_{0} {n}^{2} {h}^{2}}{\pi m {e}^{2}}$$
$$\therefore P.E. = \cfrac{1}{4 \pi {\epsilon}_{0}} \cfrac{{e}^{2}}{\left( \cfrac{{\epsilon}_{0} {n}^{2} {h}^{2}}{\pi m {e}^{2}} \right)}$$
$$\Rightarrow P.E. = \cfrac{1}{4 {{\epsilon}_{0}}^{2}} \cfrac{m {e}^{4}}{{n}^{2} {h}^{2}}$$
Now,
$${a}_{0} = \cfrac{{\epsilon}_{0} {h}^{2}}{\pi m {e}^{2}}$$
$$\Rightarrow {e}^{4} = \cfrac{{{\epsilon}_{0}}^{2} {h}^{4}}{{\pi}^{2} {m}^{2} {{a}_{0}}^{2}}$$
Therefore,
$$\therefore P.E. = \cfrac{1}{4 {{\epsilon}_{0}}^{2}} \cfrac{m}{{n}^{2} {h}^{2}} \left( \cfrac{{{\epsilon}_{0}}^{2} {h}^{4}}{{\pi}^{2} {m}^{2} {{a}_{0}}^{2}} \right)$$
$$\Rightarrow P.E. = \cfrac{{h}^{2}}{4 {\pi}^{2} {n}^{2} m {{a}_{0}}^{2}}$$
For second orbit of hydrogen atom,
$$n = 2$$
$$\Rightarrow P.E. = \cfrac{{h}^{2}}{16 {\pi}^{2} m {{a}_{0}}^{2}}$$
Hence the magnitude of potential energy of an electron in the second Bohr orbit of a hydrogen atom is $$\cfrac{{h}^{2}}{16 {\pi}^{2} m {{a}_{0}}^{2}}$$.