Self Studies

Structure of Atom Test - 70

Result Self Studies

Structure of Atom Test - 70
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The number of revolutions per second made by an electron in the first Bohr's orbit of hydrogen atom is(Given, $$r=0.53\overset{o}{A}$$).
    Solution
    From Bohr's theory
    $$mvr=\displaystyle\frac{nh}{2\pi}$$
    For first orbit $$n=1$$
    $$m(r\omega )r=\displaystyle\frac{1\times h}{2\pi}$$
    $$\Rightarrow mr^22\pi f=\displaystyle\frac{h}{2\pi}$$
    $$\Rightarrow \displaystyle f=\frac{h}{4\pi^2mv^2}$$
    $$=\displaystyle\frac{6.6\times 10^{-34}}{4\times (3.14)^2\times 9.1\times 10^{-31}\times (0.33\times 10^{-10})^2}$$.
    =$$6.5\times10^{15} Hz$$
  • Question 2
    1 / -0
    The highest energy in Balmer series, in the emission spectra of hydrogen is represented by:
    $$\left({R}_{H}=109737 {cm}^{-1}\right)$$
    Solution
    $$\bar{v}=\dfrac{1}{\lambda}=R_H{Z}^{2}\left[\dfrac{1}{{n}_{1}^{2}} - \dfrac{1}{{n}_{2}^{2}}\right]$$

    $$=109737 \times {1}^{2} \left[\dfrac{1}{{2}^{2}} - \dfrac{1}{{\infty}^{2}}\right] = 27434.25 {cm}^{-1}$$

    (series limit will be of highest energy)
  • Question 3
    1 / -0
    The energy of second Bohr orbit of the hydrogen atom is $$-328kJ\ { mol }^{ -1 }$$. Hence, the energy of fourth Bohr orbit would be:
    Solution
    $$ \displaystyle E \propto \dfrac {  1 }{  n^2 }$$

    $$ \displaystyle \dfrac { E_4  }{ E_2  } = \left(\dfrac {  n_2 }{ n_4  } \right)^2$$

    $$ \displaystyle   { E_4  }={-328 \: kJ/mol } \times \left(\dfrac {   n_2 }{  n_4  } \right)^2$$

    $$ \displaystyle   { E_4  }={-328 \: kJ/mol } \times \left(\dfrac {   2 }{  4  } \right)^2$$

    $$ \displaystyle { E_4  }={-82 \: kJ/mol }$$

    Hence, the energy of fourth Bohr orbit would be $$-82kJ\ { mol }^{ -1 }$$.
  • Question 4
    1 / -0
    Which of the following orbitals has the highest energy?
    Solution
    The orbital energies are compared with the help of $$n+l$$ rule. The higher value of $$n+l$$, higher is the energy of the orbital.

    $$5d = n+l =7$$
    $$5f = n+l =8$$
    $$6s = n+l =6$$
    $$6p = n+l =7$$

    The $$n+l$$ value is greatest for 5f orbital. 
    Hence it has the highest energy among the given options.
  • Question 5
    1 / -0
    The spectral lines corresponding to the radiation emitted by an electron jumping from higher orbits to first orbit belong to:
    Solution
    The spectral lines corresponding to the radiation emitted by an electron jumping from higher orbits to first orbit belong to Lyman series.
    Lyman series corresponds to transitions to $$\displaystyle n = 1$$ level.
    Balmer series corresponds to transitions to $$\displaystyle n = 2$$ level.
    Paschen series corresponds to transitions to $$\displaystyle n = 3$$ level.
    Pfund series corresponds to transitions to $$\displaystyle n = 4$$ level.   
  • Question 6
    1 / -0
    If the shortest wavelength of the spectral line of $${ He }^{ + }$$ in Lyman series is $$x$$, then longest wavelength of the line in Balmer series of $${ Li }^{ 2+ }$$ is:
    Solution
    Shortest wavelength $$={ n }_{ \infty  }\rightarrow { n }_{ 1 }$$

    $$\cfrac { 1 }{ { \lambda  }_{ min } } ={ R }_{ H }\cfrac { { Z }^{ 2 } }{ { n }_{ 1 }^{ 2 } } $$

    for $${He}^{+},Z=2$$

    $$\cfrac { 1 }{ { \lambda  }_{ min } } ={ R }_{ H }\cfrac { { 2 }^{ 2 } }{ { 1 }_{  }^{ 2 } } \quad $$ or $${ R }_{ H }=\cfrac { 1 }{ 4x } $$

    for the longest wavelength in Balmer series of $${ Li }^{ 2+ },Z=3,{ n }_{ 1 }=2,{ n }_{ 2 }=3$$

    $$\cfrac { 1 }{ { \lambda  }_{ max } } ={ R }_{ H }{ Z }^{ 2 }\left( \cfrac { 1 }{ { n }_{ 1 }^{ 2 } } -\cfrac { 1 }{ { n }_{ 2 }^{ 2 } }  \right) $$

    $$\cfrac { 1 }{ { \lambda  }_{ max } } =\cfrac { 1 }{ 4x } { (3) }^{ 2 }\left( \cfrac { 1 }{ 4 } -\cfrac { 1 }{ 9 }  \right) $$

    $$\cfrac { 1 }{ { \lambda  }_{ max } } =\cfrac { 9 }{ 4x } \times \cfrac { 5 }{ 36 } $$

    $$\quad { \lambda  }_{ max }=\cfrac { 16x }{ 5 } $$
  • Question 7
    1 / -0
    The fast emission line on hydrogen atomic spectrum in the Balmer series appears at:

    [$$R =$$ Rydberg constant]
    Solution
    Rydberg - Riz equation is :

    $$\bar{v}=R_H\left [ \dfrac{1}{n^2_1}-\dfrac{1}{n^2_2} \right ] \,\,\, (Where \, n_1= 2, n_2=3)$$

    $$\therefore \bar{v}=R_H\left [ \dfrac{9-4}{64} \right ] =\dfrac{5R} {36}  cm^{-1}$$
  • Question 8
    1 / -0
    The magnitude of potential energy of an electron in the second Bohr orbit of a hydrogen atom is:
    [$$a_0$$ is Bohr radius].
    Solution
    Solution:- (B) $$\cfrac{{h}^{2}}{16 {\pi}^{2} m a_o^2}$$
    According to Bohr's model of an atom, the potential energy of electron having charge $$-e$$ is given as-
    $$P.E. = \cfrac{1}{4 \pi {\epsilon}_{0}} \cfrac{e}{r} \left( -e \right)$$
    $$\Rightarrow P.E. =- \cfrac{1}{4 \pi {\epsilon}_{0}} \cfrac{{e}^{2}}{r}$$
    $$\because r = \cfrac{{\epsilon}_{0} {n}^{2} {h}^{2}}{\pi m {e}^{2}}$$
    $$\therefore P.E. = \cfrac{1}{4 \pi {\epsilon}_{0}} \cfrac{{e}^{2}}{\left( \cfrac{{\epsilon}_{0} {n}^{2} {h}^{2}}{\pi m {e}^{2}} \right)}$$
    $$\Rightarrow P.E. = \cfrac{1}{4 {{\epsilon}_{0}}^{2}} \cfrac{m {e}^{4}}{{n}^{2} {h}^{2}}$$
    Now,
    $${a}_{0} = \cfrac{{\epsilon}_{0} {h}^{2}}{\pi m {e}^{2}}$$
    $$\Rightarrow {e}^{4} = \cfrac{{{\epsilon}_{0}}^{2} {h}^{4}}{{\pi}^{2} {m}^{2} {{a}_{0}}^{2}}$$
    Therefore,
    $$\therefore P.E. = \cfrac{1}{4 {{\epsilon}_{0}}^{2}} \cfrac{m}{{n}^{2} {h}^{2}} \left( \cfrac{{{\epsilon}_{0}}^{2} {h}^{4}}{{\pi}^{2} {m}^{2} {{a}_{0}}^{2}} \right)$$
    $$\Rightarrow P.E. = \cfrac{{h}^{2}}{4 {\pi}^{2} {n}^{2} m {{a}_{0}}^{2}}$$
    For second orbit of hydrogen atom,
    $$n = 2$$
    $$\Rightarrow P.E. = \cfrac{{h}^{2}}{16 {\pi}^{2} m {{a}_{0}}^{2}}$$
    Hence the magnitude of potential energy of an electron in the second Bohr orbit of a hydrogen atom is $$\cfrac{{h}^{2}}{16 {\pi}^{2} m {{a}_{0}}^{2}}$$.
  • Question 9
    1 / -0
    The minimum wavelength absorbed by electron initially present in $$(n_1+1)$$ shell of $$Li^{+2}$$ ion:(during its excitation)
    Solution
    Minimum wave length means maximum energy
    So, $$n_2= \infty$$
    $$\begin{array}{l} \frac { 1 }{ \lambda  } ={ R_{ H } }{ Z^{ 2 } }\left( { \frac { 1 }{ { { { \left( { { n_{ 1 } }+1 } \right)  }^{ 2 } } } } -\frac { 1 }{ { { { \left( \infty  \right)  }^{ 2 } } } }  } \right) \Rightarrow { R_{ H } }\times { \left( 3 \right) ^{ 2 } }\left( { \frac { 1 }{ { { { \left( { { n_{ 1 } }+1 } \right)  }^{ 2 } } } }  } \right)  \\ \lambda =\frac { { { { \left( { { n_{ 1 } }+1 } \right)  }^{ 2 } } } }{ { 9{ R } } }  \end{array}$$
    Option B is correct.
  • Question 10
    1 / -0
    Calculate the wavelength of the first line of $$He^{+}$$ ion spectral series whose interval with extreme lines is:
    $$\dfrac{1}{\lambda_{1}} - \dfrac{1}{\lambda_{2}} = 2.7541 \times 10^{4} cm^{-1}$$
    Solution

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now