Self Studies

Thermodynamics Test - 35

Result Self Studies

Thermodynamics Test - 35
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The statement "The change of enthalpy of a chemical reaction is same whether the reaction takes place in one or several steps" is:
    Solution
    Hess's law of constant heat summation states that, "The standard enthalpy of a  reaction, which takes place in several steps, is the sum of the standard enthalpies of intermediate reactions into which the overall reactions may be divided at the same temperature".
  • Question 2
    1 / -0
    1 mole of an ideal gas STP is subjected to a reversible adiabatic expansion to double its volume. The change in internal energy $$(\gamma = 1.4)$$ 
    Solution
    Given,
    $$\gamma=1.4$$
    $$n=1$$
    At STP, $$T_1=273.15K$$
    $$V_1=V$$
    $$V_2=2V$$
    In adiabatic process,  
    $$PV^{\gamma}=constant=k$$. . . . . . . .(1)
    From ideal gas equation,
    $$PV=nRT$$
    $$P=\dfrac{1\times RT}{V}=\dfrac{RT}{V}$$. . . .  .. (2)
    Substitute equation (2) in equation (1), we get
    $$\dfrac{RT}{V}V^{\gamma}=k$$
    $$TV^{\gamma-1}=k'(constant)$$
    $$T_1V_1^{\gamma-1}=T_2V_2^{\gamma-1}$$
    $$T_2=T_1(\dfrac{V_1}{V_2})^{\gamma-1}$$
    $$T_2=273.15\times (\dfrac{V}{2V})^{1.4-1}$$
    $$T_2=207.00K$$
    Change in internal energy for adibatic process,
    $$\Delta U=\dfrac{R}{\gamma-1}(T_1-T_2)$$
    $$\Delta U=\dfrac{8.31}{1.4-1}(273.15-207.00)$$
    $$\Delta U=1373J$$
    The correct option is C.

  • Question 3
    1 / -0
    For the reaction at $$\ { 25 }^{ o }C,{ X }_{ 2 }{ O }_{ 4(l) }\longrightarrow 2X{ O }_{ 2(g) }\quad $$
    $$\Delta H=2.1kcal$$ and $$\Delta S=20cal\quad { K }^{ -1 }$$. 
    The reaction would be:
    Solution
    Answer:- (A) Spontaneous
    Given:-
    T $$= 25^oC = (273 + 25)K = 298K$$
    $$\Delta H = 2.1 kcal = 2.1 \times {10}^{3} cal \; \& \; \Delta S = 20cal{K}^{-1}$$
    Gibbs free energy $$(\Delta G) = \Delta H - T \Delta S$$
    $$\Delta G = 2.1 \times {10}^{3} - (298 \times 20) = 2100 - 5960 = -2860cal$$
    $$\because \Delta G = negative$$, thus the reaction is spontaneous.
  • Question 4
    1 / -0
    Internal energy of an ideal gas depends upon
    Solution

    Hint: $$U=nC_v\delta T$$
    Explanation: The internal energy of a gas is an inherent property. For an ideal gas, there is the absence of inter-molecular collision. So, gas has only translational kinetic energy. So, internal energy doesn’t depend on external factors like volume and pressure. So, the internal energy of an ideal gas depends on temperature only.

    $$Answer:$$

    Hence, option A is the correct option. 

  • Question 5
    1 / -0
    Three stars A, B, C have surface temperatures $$T_A$$, $$T_B$$ and $$T_C$$. A appears bluish, B appears reddish and C appears yellowish. We can conclude that:
    Solution
    According to Wien's Displacement law we know that:-
    $$\lambda=\dfrac bT \ldots \ldots (1)$$.

    Given that three stars $$A, B $$ and $$C$$  where $$A$$ appears bluish, $$B$$ appears reddish and $$C$$ appears yellowish.

    We know that $$\lambda_{blue}< \lambda_{yellow}< \lambda_{Red}$$
    $$\implies \lambda_{A}<\lambda_{C}<\lambda_{B} ..... (2)$$

    from (1) and (2) we get
    $$\implies T_{A} > T_{C}> T_{B}$$

    Hence option $$(A)$$ is correct
  • Question 6
    1 / -0
    1 kg of water is heated from 40 C to 70 C, If its volume remains constant, then the change in internal energy is (specific heat of water = 4148 J$${ kg }^{ -1 }{ K }^{ -1 })$$
    Solution
    Since volume does not change as the energy supplied is used to change the internal energy.
    $$\Delta E=\Delta U=mC\theta\\ \quad=1\times4148\times30\\ \quad=1.24\times 10^5 J$$
  • Question 7
    1 / -0
    An electric heater supplies heat to a system at a rate of 120 W. If system performs work at a rate of 80 J $${ s }^{ -1 }$$, the rate of increase in internal energy is :
    Solution
    Q=120 W
    W=80 Js$$^{-1}$$
    From the first law of thermodynamics:
    $$Q=U+W$$
    where U=internal energy
    $$\therefore U=Q-W =120-80W=40 J s^{-1}$$
  • Question 8
    1 / -0
    An ideal gas undergoing a change of state from A  to  B  through   four  different  paths  I,   II   ,III  and   IV  as  shown  in  the  P-V  diagram  that   lead  to  the  same  change of state, then the change in internal energy is

    Solution
    Internal energy is a function of the state of a system and does not depend on the path. Therefore, internal energy will be same. 
  • Question 9
    1 / -0
    For the combustion of $$CH_4$$ at 1 atm pressure & 300 K, which of the following options is correct?
    $$2M + O_2 \xrightarrow  2MO$$
    $$\Delta G_{1000 ^{\circ}C} = -921 kJ/mol$$
    $$\Delta G_{1900 ^{\circ}C} = -300 kJ/mol$$
    $$2C + O_2 \xrightarrow 2CO$$
    $$\Delta G _{1000 ^{\circ}C} = -432 kJ/mol$$
    $$\Delta G_{1900 ^{\circ}C} = -624 kJ/mol$$
    $$MO + C \xrightarrow{\Delta} M + CO \uparrow$$
    This reaction is feasible at temperature:
    Solution
    $$At\quad 100℃,\quad 2M+{ O }_{ 2 }\longrightarrow 2MO;\Delta G=-921kJ/mole\\ \quad \quad \quad \quad \quad \quad \quad \therefore 2MO\longrightarrow 2M+{ O }_{ 2 };\Delta G=921kJ/mole\\ \quad \quad \quad \quad \quad \quad \quad \quad \quad MO\longrightarrow M+\cfrac { 1 }{ 2 } { O }_{ 2 };\Delta G=460.5kJ/mole-------(i)\\ \quad \quad \quad \quad \quad \quad \quad \quad \quad 2C+{ O }_{ 2 }\longrightarrow 2CO;\Delta G=-432kJ/mole\\ \quad \quad \quad \quad \quad \quad \quad \quad \quad C+\cfrac { 1 }{ 2 } { O }_{ 2 }\longrightarrow CO;\Delta G=-216kJ/mole--------(ii)\\ Adding\quad (i)\& (ii),\quad MO+C\xrightarrow { \quad \quad \quad \quad \Delta \quad \quad \quad  } M+CO\uparrow ;\Delta G=460.5-216=244.5kJ/mole\\ \therefore \Delta G>0$$ 
    $$\therefore $$ It is not feasible.
    $$At\quad 1900℃,\quad 2M+{ O }_{ 2 }\longrightarrow 2MO;\Delta G=-300kJ/mole\\ \quad \quad \quad \quad \quad \quad \quad \therefore 2MO\longrightarrow 2M+{ O }_{ 2 };\Delta G=300kJ/mole\\ \quad \quad \quad \quad \quad \quad \quad \quad \quad MO\longrightarrow M+\cfrac { 1 }{ 2 } { O }_{ 2 };\Delta G=150kJ/mole-------(iii)\\ \quad \quad \quad \quad \quad \quad \quad \quad \quad 2C+{ O }_{ 2 }\longrightarrow 2CO;\Delta G=-624kJ/mole\\ \quad \quad \quad \quad \quad \quad \quad \quad \quad C+\cfrac { 1 }{ 2 } { O }_{ 2 }\longrightarrow CO;\Delta G=-312kJ/mole--------(iv)\\ Adding\quad (iii)\& (iv),\quad MO+C\xrightarrow { \quad \quad \quad \quad \Delta \quad \quad \quad  } M+CO\uparrow ;\Delta G=150-312=-162kJ/mole\\ \therefore \Delta G<0$$ 
    $$\therefore $$ It is feasible.
  • Question 10
    1 / -0
    Which of the following parameters does not charaterize the thermodynamic state of matter?
    Solution
    From the above options Work depends on the shift from one state to another
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Selfstudy
Selfstudy
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now