Self Studies

Thermodynamics Test - 48

Result Self Studies

Thermodynamics Test - 48
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    For the reaction : $$X_2O_4(l)\rightarrow 2XO_2(g)$$. $$\Delta U = 2.1\,kcal,\  \Delta S = 20\,cal\,K^{ -1 }\,at\ 300\,K$$. 
    Hence $$\Delta G$$ is:
    Solution
    As we know,

    $$\Delta H = \Delta U + \Delta n_gRT$$
           
            $$= 2.1+ 2\times 0.002\times 300 = 3.3\,kcal$$

    $$\Delta G = \Delta H - T\Delta S$$
          
            $$= 3.3-300\times (0.02) = -2.7\,kcal$$
  • Question 2
    1 / -0
    $$C(s) + O_2(g)  \rightarrow  CO_2(g),  \quad \Delta{H} = + 94.0  K cal.$$

    $$CO(g) +\frac{1}{2} O_2(g)   \rightarrow CO_2(g)    ,\quad \Delta H = -67.7  K  cal.$$

    From the above reactions find how much heat (Kcal mole$$^{-1}$$) would be produced in the following reaction:

    $$C(s) + \frac{1}{2} O_2(g)  \rightarrow CO(g)$$
    Solution
    The thermochemical reactions are as given below.

    $$C(s) + O_2(g)  \rightarrow  CO_2(g) \Delta H = + 94.0  K cal.$$  ......(1)

    $$CO(g) +\frac{1}{2} O_2(g)   \rightarrow CO_2(g),     \Delta H = -67.7  K  cal$$  ......(2)

    The reaction (2) is reversed and added to the reaction (1) to obtain the reaction $$C(s) + \frac{1}{2} O_2(g)  \rightarrow CO(g)$$.

    The heat produced in this reaction is $$94.0-(-67.7)=161.7$$ Kcal/mole
  • Question 3
    1 / -0
    200 ml of 1HCl is mixed with 400 ml of 0.5NaOH. The temperature rise in the calorimeter was found to be 4.0oC. Water equivalent of calorimeter is 25g and the specific heat of the solution is 1 cal/mL/degree. If the theoritical heat of neutralization of a strong acid and strong base is 13.5 kcal, then the percentage error  in this experiment while calculating the heat of neutralization is
    Solution
    Total volume $$200+400=600 ml$$
    200 ml of 1 M acid $$=$$ 400 ml of 0.5 M $$NaOH$$
    200 m. eq. of acid reacts with 200 m.eq. of base $$=\Delta H$$
    Heat of neutralization $$=5\times \Delta H$$
    Heat produced during neutralization $$=$$ heat taken up by calorimeter + solution
    $$=m_{1}s_{1}\Delta T+m_{2}s_{2}\Delta T$$
    $$=(25\times 1 \times 4)+(600\times 1 \times 4)=2500 cal$$
    $$\therefore$$ Heat of neutralization $$=-5\times 2500$$$$=-12500 cal=-12.5 kcal$$
    % error $$=(\dfrac{13.5-12.5}{13.5})\times 100=7.4$$
  • Question 4
    1 / -0
    0.16 g of methane was subjected to combustion at $$27^{\circ}C$$ in bomb calorimeter. The temperature of calorimeter system (including water)  was found to rise by $$0.5^{\circ}C$$. If the heat of combustion of methane at constant volume and constant pressure is $$x$$ kJ/mole, find the value of $$x$$. The thermal capacity of the calorimeter system is $$17.7\ kJ\ K^{-1},\ R=8.314\ JK^{-1}\ mol^{-1}$$.
    Solution
    Heat given by burning of 0.16 g methane = heat taken up by calorimeter = $$17.7  \times 0.5 =8.85 \:kJ$$
    $$\displaystyle \therefore$$ Heat given by burning of 16 g methane

     $$=\dfrac{8.85\times 16}{0.16}=885 \:kJ$$

    The burning is taking place at constant volume in a bomb calorimeter.
    $$\therefore              \Delta U= -885 \: kJ \: mol^{-1}$$
    $$\because             \Delta H= \Delta U+\Delta nRT$$


    $$CH_4+ 2O_2\longrightarrow CO_2 + 2H_2O(l)$$;
    $$\therefore                    \Delta n = -2$$
    $$\therefore               \Delta H= -885+(-2)\times  8.314\times  10 ^{-3} \times 300$$
                      $$= -889.98\: kJ \: mol^{-1}$$

    Hence, the correct option is $$\text{A}$$
  • Question 5
    1 / -0
    For the hypothetical reaction: 
       $${ A }_{ 2 }(g)+{ B }_{ 2 }(g)\rightleftharpoons 2AB(g)$$

    $${ \Delta  }_{ r }{ G }^{ o }$$ and $${ \Delta  }_{ r }{ S }^{ o }$$ is $$20 kJ/mol$$ and $$-20{ JK }^{ -1 }{ mol }^{ -1 }$$ respectively at $$200K$$. If $${ \Delta  }_{ r }{ C  }_{ p }$$ is $$20{ JK }^{ -1 }{ mol }^{ -1 }$$ then $${ \Delta  }_{ r }{ H }^{ o }$$ at $$400K$$ is :
    Solution
    As we know,

    $$\Delta G =\Delta H- T \Delta S; \Rightarrow 20=\Delta H -200\times \dfrac{-20}{1000}; \Rightarrow \Delta H = 16kJ/mol$$

    Also,
    $$\Delta H= \Delta_r C_p (T_2 - T_1);  \Delta H = 16+20\times \dfrac{200}{1000} = 20kJ/mol$$
  • Question 6
    1 / -0
    Specific heat of substance at m.pt. (or b.pt. or for isothermal process) and specific heat of a substance during adiabatic change respectively are
    Solution
    The amount of heat required to raise the temperature of unit mass of a substance by one degree celsius is known as specific heat. It is given by the ratio $$\displaystyle \left ( \frac{\partial H}{\partial T} \right )$$
    When at constant pressure, one phase of a substance is in equilibrium with other phase (during melting or boiling), the heat $$\partial H$$ is supplied to the system, and the temperature change $$\partial T$$ is zero as the heat supplied is utilized for the phase transition.
    Hence, the specific heat is infinite. This is also true for the isothermal process.
    During adiabatic process, no heat is supplied to system. The term $$\partial H$$ is zero. Hence the specific heat is zero.
  • Question 7
    1 / -0
    The heat of reaction for $$A + \frac{1}{2} O_2  \rightarrow AO$$ is $$-50$$ kcal/mol and $$AO + \frac{1}{2} O_2  \rightarrow AO_2$$ is $$100$$ kcal/mol.
    The heat of reaction (in kcal/mol) for $$A + O_2  \rightarrow AO_2$$ will be:
    Solution
    The thermochemical reactions are given below:

    $$A + \dfrac{1}{2} O_2  \rightarrow AO \ ; \Delta H =-50$$ kcal/mol

    $$AO + \dfrac{1}{2} O_2  \rightarrow AO_2\ ; \Delta H =100$$ kcal/mol

    The above two reactions are added to obtain the reaction as follows:

    $$A + O_2  \rightarrow AO_2$$

    Therefore, the heat of the reaction is $$-50+100=50$$ kcal/mol.
  • Question 8
    1 / -0
    Combustion of surose is used by aerobic organisms for providing energy for the life sustaining processes. If all the capturing of energy from the reaction is done through electrical process (non P-V work) then calculate maximum available energy which can be captured by combustion of $$34.2gm$$ of sucrose
    Given : $$\Delta {{H}_{combustion}}(sucrose)=-6000\ kJ. {mol}^{-1}$$
                 $$\Delta {{S}_{combustion}}=180J/K.mol$$ and body temperature is $$300K$$
    Solution
    As we know, 

    $$\Delta G = \Delta H - T \delta S =-6000-300\times 0.18 = -6054\ kJ/mol$$

    So, for 34.2gm (0.1 mol) of sucrose maximum available energy $$ \Delta G = 605.4\ kJ$$
  • Question 9
    1 / -0
    Find the forward$$\displaystyle \:\Delta _{r}U^{\circ}$$ at 300K for the reaction  $$4HCl(g)+O_{2}(g)\rightarrow 2Cl_{2}(g)+2H_{2}O(g)$$ Assume all gases are ideal. Given $$\displaystyle \:H_{2}(g)+Cl_{2}(g)\rightarrow 2HCl(g)$$ $$\Delta _{r}H_{300}^{^{\circ}}= -184.5 kJ/mol$$ 
    $$\displaystyle \:2H_{2}(g)+O_{2}(g)\rightarrow 2H_2O(g)$$ $$\Delta _{r}H_{300}^{^{\circ}}= -483 kJ/mol$$ (Use R= 8.3 J/mole)
    Solution
     $$4HCl(g)+O_2(g) \longrightarrow 2Cl_2(g)+2H_2O(g)......(i)$$
     $$H_2(g)+Cl_2(g) \longrightarrow 2HCl(g)....(ii)$$
     $$2H_2(g)+O_2(g) \longrightarrow 2H_2O(g)....(iii)$$
    As it can be clearly seen
     $$Eq(i)=Eq(iii)-2Eq(ii)$$
    Thus  $$\Delta H_r^{o} (i)=\Delta H_r^{o}(iii)-2\Delta H_r^{o}(ii)$$
     $$=-483-(2 \times -184)$$
     $$=-114kJ/mol$$
     $$\Delta U_r^{o}=\Delta H_r^{o}-\Delta n_gRT$$
    Thus $$\Delta U_r^{o}=-114-(4-5) \times 0.0083 \times 300$$
     $$ \Rightarrow \Delta U_r^{o}=-111.5kJ/mol$$      
  • Question 10
    1 / -0
    In the Born-Haber cycle for the formation of solid common salt ($$Nacl$$), the largest contribution comes from
    Solution
    REF.Image

    $$\Delta _{Hf^{\circ }}=\Delta H_{sub}+IE+\Delta H_{diss}+EA+U$$

    $$\Delta _{Hf^{\circ }}=108+496+122-349-788=-411 kJ/mole$$

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Selfstudy
Selfstudy
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now