Mass of ethylene $$= 70 \; g$$
Molar mass of ethylene $$= 28 \; g$$
$$\therefore$$ No. of moles of ethylene $$= \cfrac{70}{28} = 2.5 \text{ moles}$$
Mass of $$HCl = 73 \; g$$
Molecular mass of $$HCl = 36.5 \; g$$
No. of moles of $$HCl = \cfrac{73}{36.5} = 2 \text{ moles}$$
Since no. of moles of $$HCl$$ are less than that of ethylene.
Hence $$HCl$$ will be limiting reagent.
$${{C}_{2}{H}_{4}}_{\left( g \right)} + {HCl}_{\left( g \right)} \longrightarrow {{C}_{2}{H}_{5}Cl}_{\left( g \right)}$$
From the reaction-
$$1$$ mole of $$HCl$$ reacts with $$1$$ mole of $${C}_{2}{H}_{4}$$ and gives $$1$$ moles of $${C}_{2}{H}_{5}Cl$$.
$$\therefore 2$$ moles of $$HCl$$ will react with $$2$$ moles of $${C}_{2}{H}_{4}$$ and will give $$2$$ mole of $${C}_{2}{H}_{5}Cl$$.
Given that $$\Delta{H} = -72.3 \; {KJ}/{mol} = -72300 \; {KJ}/{mol}$$
Given $$\Delta{H}$$ is for $$1$$ mole of product.
For $$2$$ moles,
$$\Delta{H} = 2 \times \left( -72300 \right) = 144600 \; {KJ}/{mol}$$
$$\Delta{{n}_{g}} = {n}_{P} - {n}_{R} = \left( 2 - \left( 2 + 2 \right) \right) = -2$$
As we know that,
$$\Delta{H} = \Delta{U} + \Delta{{n}_{g}}RT$$
$$\Rightarrow \Delta{U} = \Delta{H} - \Delta{{n}_{g}} RT$$
$$\Delta{U} = -144600 - \left( -2 \times 8.314 \times 300 \right) = -139.61 \; {KJ}/{mol}$$.