$$4 {N{O}_{2}}_{\left( g \right)} + {{O}_{2}}_{\left( g \right)} \longrightarrow 2 {{N}_{2}{O}_{5}}_{\left( g \right)}; \quad \Delta{H} = -111 \; kJ ..... \left( 1 \right)$$
$${{N}_{2}{O}_{5}}_{\left( s \right)} \longrightarrow {{N}_{2}{O}_{5}}_{\left( g \right)}; \quad \Delta{H} = 54 \; kJ$$
$${{N}_{2}{O}_{5}}_{\left( g \right)} \longrightarrow {{N}_{2}{O}_{5}}_{\left( s \right)}; \quad \Delta{H} = -54 \; kJ$$
$$2 \times \left[ {{N}_{2}{O}_{5}}_{\left( g \right)} \longrightarrow {{N}_{2}{O}_{5}}_{\left( s \right)}; \quad \Delta{H} = -54 \; kJ \right]$$
$$2 {{N}_{2}{O}_{5}}_{\left( g \right)} \longrightarrow 2 {{N}_{2}{O}_{5}}_{\left( s \right)}; \quad \Delta{H} = -108 \; kJ ..... \left( 2 \right)$$
Adding $${eq}^{n} \left( 1 \right) \& \left( 2 \right)$$, we have
$$4 {N{O}_{2}}_{\left( g \right)} + {{O}_{2}}_{\left( g \right)} + 2 {{N}_{2}{O}_{5}}_{\left( g \right)} \longrightarrow 2 {{N}_{2}{O}_{5}}_{\left( g \right)} + 2 {{N}_{2}{O}_{5}}_{\left( s \right)}; \quad \Delta{H} = \left[ \left( -111 \right) + \left( -108 \right) \right] \; kJ$$
$$4 {N{O}_{2}}_{\left( g \right)} + {{O}_{2}}_{\left( g \right)} \longrightarrow 2 {{N}_{2}{O}_{5}}_{\left( s \right)}; \quad \Delta{H} = -219 \; kJ$$
Hence if $${{N}_{2}{O}_{5}}_{\left( s \right)}$$ is formed instead of $${{N}_{2}{O}_{5}}_{\left( g \right)}$$, the value of $$\Delta{H}$$ will be $$-219 \; kJ$$.