Self Studies

Thermodynamics Test - 9

Result Self Studies

Thermodynamics Test - 9
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Which one of the following equations does not correctly represent the first law of thermodynamics for the given processes involving an ideal gas? (Assume non-expansion work is zero)
    Solution
    Solution:- (C) Adiabatic process: $$\Delta U=-w$$

    For: 
    Cyclic process $$:\Delta U=0 \Rightarrow q=-w$$

    Isothermal process $$:\Delta U=0 \Rightarrow q=-w$$

    Adiabatic process: $$q=0 \Rightarrow \Delta U=w$$

    Isochoric process : $$w=0 \Rightarrow \Delta U=q$$
  • Question 2
    1 / -0
    Oxidising power of chlorine in aqueous solution can be determined by the parameters indicated below $$\displaystyle \frac{1}{2}\mathrm{C}1_{2}(\mathrm{g})$$ to $$\mathrm{C}1^{-}(\mathrm{a}\mathrm{q})$$
    (using the data, $$\Delta_{\mathrm{d}\mathrm{i}\mathrm{s}\mathrm{s}}\mathrm{H}_{\mathrm{C}1_{2}}^{\Theta}=240\mathrm{k}\mathrm{J}\mathrm{m}\mathrm{o}1^{-1},\ \Delta_{\mathrm{e}\mathrm{g}}\mathrm{H}_{\mathrm{C}1}^{\Theta}=-349\mathrm{k}\mathrm{J}\mathrm{m}\mathrm{o}1^{-1},\ \Delta_{\mathrm{h}\mathrm{y}\mathrm{d}}\mathrm{H}_{\mathrm{C}1^{-}}=-381\mathrm{k}\mathrm{J}\mathrm{m}\mathrm{o}1^{-1}$$) will be 

    Solution
    Oxidising power of chlorine in aqueous solution can be estimated by calculating the overall enthalpy change of reaction.
    The reaction takes place with following steps:
    $$1/2Cl_{2}       -> Cl$$       ΔH1
    $$Cl    -> Cl^{-}$$              ΔH2
    $$Cl^{-}      -> Cl^{-} (aq) $$     ΔH3
    ΔH will be the sum of the energy involved in these
    steps.
    Hence, ΔH = ΔH1 +ΔH2 +ΔH3
    ΔH1 = 240/2 = 120kJ/mol, ΔH2 = -349kJ/mol, ΔH3 = -381kJ/mol
    Hence, ΔH = 120-349-381 = -610kJ/mol
  • Question 3
    1 / -0
    Which of the following parameters does not characterize the thermodynamic state of matter?
    Solution

  • Question 4
    1 / -0
    The combustions of benzene (l) gives $$CO_2(g)$$ and $$H_2O(l)$$. Given that heat of combustion of benzene at constant volume is $$-3263.9 \ kJ\, mol^{-1}$$ at $$25^oC$$, heat of combustion (in $$kJ\,mol^{-1}$$) of benzene at constant pressure will be:
    $$(R =8.314JK^{-1}\,mol^{-1})$$
    Solution
    $$C_6H_6(l) + \dfrac{15}{2} O_2(g) \rightarrow 6CO_2(g) + 3H_2O(l)$$

    $$\Delta H = \Delta U + \Delta n RT$$

    $$=-3263.9 + \dfrac {( 6- 7.5) \times 8.314 \times 298}{1000}$$

    $$=-3263.9 - 3.7 $$

    $$= -3267.6 \ kJ$$

    Hence, option $$B$$ is correct.
  • Question 5
    1 / -0
    The standard Gibbs energy for the given cell reaction in $$kJ$$ $${mol}^{-1}$$ at $$298K$$ is:$$Zn(s)+{Cu}^{2+}(aq)\rightarrow {Zn}^{2+}(aq)+Cu(s)$$

    $${E}^{o}_{cell}=2V$$ at $$298K$$
    (Faraday's constant, $$F=96000\ C{mol}^{-1}$$)
    Solution
    We know,
    $$\Delta G^o = -nFE^o_{cell} $$

    Since 2 electrons are involved so $$n=2$$.

    $$\Delta G = -nFE^o_{cell} = -2 \times 96000 \times 2 =-384000\ J= -384\ kJ$$
  • Question 6
    1 / -0
    The INCORRECT match in the following is :
    Solution
    We know,
    $$\Delta G=\Delta G^0+RT\ lnK$$

    At equilibrium, 

    $$\Delta G=\Delta G^0+RT\ lnK=0$$

    $$\Rightarrow \Delta G^0=−RT\ lnK$$

    $$−RT\ lnK<0$$

    $$RT\ lnK>0$$

    $$lnK>0$$

    $$\Rightarrow K>1$$
  • Question 7
    1 / -0
    An ideal gas undergoes a cyclic process as shown in Figure.

    $$\Delta U_{BC}=-5$$ kJ $$mol^{-1}$$, $$q_{AB}=2$$ kJ $$mol^{-1}$$

    $$W_{AB}=-5$$ kJ $$mol^{-1}$$, $$W_{CA}=3$$ kJ $$mol^{-1}$$

    Heat absorbed by the system during process CA is:

    Solution
    $$\Delta U _{AB} = q_{AB}+W_{AB}=2+(-5)=-3 kJ/mol$$

    $$\Delta U _{BC} =  -5 kJ/mol$$

    For cyclic process, $$\Delta U = 0$$

    $$\Delta  U _{AB}+ \Delta U _{BC}  + \Delta U_{CA} = 0$$

    $$  \Delta U_{CA} = -\Delta  U _{AB}- \Delta U _{BC}   $$

    $$  \Delta U_{CA} = - (-3 )- (-5)=8 kJ/mol$$

    $$  \Delta U_{CA} =q_{CA}+W_{CA} $$

    $$  8   =q_{CA}+3$$

    $$ q_{CA}=+5kJ/mol$$

    Heat absorbed has positive sign.
  • Question 8
    1 / -0
    A process will be spontaneous to all temperatures if:
    Solution
    Solution:- (B) $$\Delta H < 0$$ and $$\Delta S > 0$$

    $$\Delta G = \Delta H - T \Delta S$$

    For reaction to be spontaneous process at all temperature, $$\Delta G < 0$$ and it is possible when $$\Delta H < 0$$ and $$\Delta S > 0$$ because it gives $$\Delta G < 0$$. 
  • Question 9
    1 / -0
    Compute the heat of formation of liquid methyl alcohol (in kJ mol $$^{ -1 }$$) using the following data. The heat of vaporisation of liquid methyl alcohol is 38  kJ mol$$^{ -1 }$$. 

    The heat of formation of gaseous atoms from the elements in their standard states: 
    $$H =$$ 218  kJ mol$$^{ -1 }$$., $$C = 715$$  kJ mol$$^{ -1 }$$. , $$O = 249$$  kJ mol$$^{ -1 }$$.
     
    Average bond energies:
    $$C-H = 415$$  kJ mol$$^{ -1 }$$. 
    $$C-O = 356$$ kJ mol$$^{ -1 }$$. 
    $$O-H = 463$$  kJ mol$$^{ -1 }$$. 
    Solution
    $$CH_3OH_{(l)}\longrightarrow CH_3OH_{(g)}; \Delta H = 38 $$  kJ mol$$^{ -1 }$$.           .....(1)

    $$\dfrac{ 1 }{ 2 }$$ $${H_2}_{(g)}$$ $$\longrightarrow H_{(g)}; \Delta H = 218 $$  kJ mol$$^{ -1 }$$.                         .....(2)

     $$C(graphite)\longrightarrow C_{(g)}; \Delta H = 715 $$  kJ mol$$^{ -1 }$$.                .....(3)

    $$\frac{ 1 }{ 2 }{O_2}_{(g)}\longrightarrow O_{(g)}; \Delta H = 249 $$  kJ mol$$^{ -1 }$$.                           .....(4)

    $$C-H_{(g)}\longrightarrow C_{(g)} + H_{(g)}; \Delta H = 415 $$  kJ mol$$^{ -1 }$$.            .....(5)

    $$C-O_{(g)}\longrightarrow C_{(g)} + O_{(g)}; \Delta H= 356 $$  kJ mol$$^{ -1 }$$.            .....(6)

    $$O-H_{(g)}\longrightarrow O_{(g)} + H_{(g)}; \Delta H = 463 $$  kJ mol$$^{ -1 }$$.           .....(7)

    $$C(s) + 2{H_2}_{(g)} + \frac{ 1 }{ 2 }{O_2}_{(g)}\longrightarrow CH_3OH_{(g)}$$                     .....(8)

    The following energies are required:

    $$2{H_2}_{(g)}\longrightarrow 4H_{(g)}$$

    $$C(graphite)\longrightarrow C_{(g)}$$

    $$\frac{1 }{ 2 }{O_2}_{(g)}\longrightarrow O_{(g)}$$

    The total energy required is

    $$(218\times 4) + 175 + 249 = 1836\  kJ$$      .....From equation (5), (6) and (7)

    The following bonds are formed: 

    Three  C-H  bonds, one  C-O  bond, and  O-H  bond

    The total energy released is

    $$(3\times 415) + 356 + 463 = 2064\  kJ$$

    Net energy released for $$CH_3OH_{(l)} = 228 + 38 = 266\  kJ$$ .... From eq (1) and (2)

    Therefore,

    $$\Delta H_fCH_3OH_{(l)} = -266$$  kJ  mol$$^{ -1 }$$

    Hence, the correct option is $$A$$

  • Question 10
    1 / -0
    The $$\Delta_f H^{ \ominus }$$ for $$CO_2(g), CO(g) and H_2O(g)$$ are $$-393.5, -110.5 and  -214.8  kJ  mol^{ -1 }$$, respectively. The standard enthalpy change $$(in kJ  mol^{ -1 })$$ for the reaction $$CO_2(g) + H_2(g)\longrightarrow CO(g) + H_2O(g)$$ is
    Solution
    $$CO_2(g) + H_2(g)\longrightarrow CO(g) + H_2O(g)$$
    $$\Delta H^{

    \ominus } = \left\{ \left[ \Delta _{ f }H^{ \ominus  }CO,(g)+\Delta _{ f

    }H^{ \ominus  }H_{ 2 }O,(g) \right] -\Delta _{ f }H^{ \ominus  }CO_{ 2

    },(g) \right\}$$
    $$\quad\quad = \left[ (-110.5)+(-241.8)-(-393.5+0) \right] $$
    $$\quad\quad = +41.2 kJ$$
    $$\Delta_fH^{ \ominus }H_2, (g) = 0$$
    $$\Delta_fH^{ \ominus } = 0$$ in elementary state.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Selfstudy
Selfstudy
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now