Self Studies

Equilibrium Test - 56

Result Self Studies

Equilibrium Test - 56
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The reaction, $$C_2H_6(g)\rightleftharpoons C_2H_4(g)+H_2(g)$$ is at equilibrium in a closed vessel at $$1000\ K$$. The enthalpy change $$(\Delta H)$$ for the reaction is $$137.0$$ $$kJ.mol^{-1}$$. Which one of the following actions would shift the equilibrium to the right?
    Solution
    On decreasing the volume of reaction, a reaction will move in backward direction due to lesser number of moles.

    On decreasing the temperature of reaction, the reaction will move in backward direction as the reaction is endothermic reaction.

    Adding an inert gas does not result in a shift as there is no change in concentration.

    Increasing the volume of reaction will shift the equilibrium in forward direction due to the higher number of moles or due to decrease in concentration.
  • Question 2
    1 / -0
    Consider the reaction:
    $${Cl}_{2}(aq)+{H}_{2}S(aq)\rightarrow S(s)+2{H}^{+}(aq)+2{Cl}^{-}(aq)$$

    The rate equation for this reaction is
    rate $$=k\left[ { Cl }_{ 2 } \right] \left[ { H }_{ 2 }S \right] $$

    Which of these mechanisms is/are consistent with this rate equation?
    A. $${Cl}_{2}+{H}_{2}S\rightarrow {H}^{+}+{Cl}^{-}+{Cl}^{+}+{HS}^{-}$$ (slow)
         $${Cl}^{+}+{HS}^{-}\rightarrow H^++{Cl}^{-}+S$$ (fast)

    B. $${H}_{2}S \rightleftharpoons {H}^{+}+{HS}^{-}$$ (fast equilibrium)
         $${Cl}_{2}+{HS}^{-}\rightarrow 2{Cl}^{-}+{H}^{+}+S$$ (Slow)
    Solution
    The slow step is the rate-determining step. 
    From the given rate law expression (Rate$$=k\left[ { Cl }_{ 2 } \right] \left[ { H }_{ 2 }S \right] $$), it can be said that the slow step should involve $$1$$ molecule of $${Cl}_{2}$$ and $$1$$ molecule of $${H}_{2}S$$.

    If we consider mechanism (A) we find that $$1$$ molecule of $${Cl}_{2}$$ and $$1$$ molecule of $${H}_{2}S$$ participate in the reaction. Hence, the rate law expression will be
    Rate$$=k\left[ { Cl }_{ 2 } \right] \left[ { H }_{ 2 }S \right] $$

    If we consider mechanism (B) we find
    Rate$$=k\left[ { Cl }_{ 2 } \right] \left[ { HS }^{ - } \right] ...(i)$$

    For equation
    $${ H }_{ 2 }S\rightleftharpoons { H }^{ + }+{ HS }^{ - }$$

    $$K=\cfrac { \left[ { H }^{ + } \right] \left[ { HS }^{ - } \right]  }{[ { H }_{ 2 }S] } $$

    or $$\left[ { HS }^{ - } \right] =\cfrac { K\left[ { H }_{ 2 }S \right]  }{ [{ H }^{ + }] } $$

    Substituting this value in equation (i) we find

    Rate, $$r=k[Cl_2]\dfrac{K[H_2S]}{[H^+]}=k'\dfrac{[Cl_2][H_2S]}{[H^+]}$$

    This is different from given rate law expression Rate$$=k\left[ { Cl }_{ 2 } \right] \left[ { H }_{ 2 }S \right] $$.

    Hence only, mechanism ($$A$$) is consistent with the given rate equation.
  • Question 3
    1 / -0
    An excess of $$Ag_2CrO_4(s)$$ is added to a $$5\times 10^{-3}M$$ $$K_2CrO_4$$ solution. The concentration of $$Ag^+$$ in the solution is closest to.[Solubility product for $$Ag_2CrO_4=1.1\times 10^{-12}$$]
    Solution
    Since, $$K_2CrO_4$$ is a strong electrolyte so the concentration of chromate ion will be almost equal to the concentration of $$K_2CrO_4$$.

    $$Ag_2CrO_4\leftrightharpoons 2Ag^+ + CrO_4^{2-}$$
    $$S$$                     $$2S$$         $$5\times 10^{-3}\ M$$

    Now,
    $$K_{sp}=[Ag^+]^2[CrO_4^{2-}]$$

    $$1.1\times 10^{-12}=[Ag^+]^2[5\times 10^{-3}]$$

    $$[Ag^+]=1.5\times 10^{-5}$$
  • Question 4
    1 / -0
    $$Au(s)\rightleftharpoons Au(l)$$

    Above equilibrium is favoured at:
    Solution
    Using Le Chaterlier's principle:
    when a system in equillibrium experiences a disturbance (such as concentration, temperature, or pressure changes), it will respond to restore a new equilibrium state by opposing the disturbance.
    For the process:
    $$Au(s)\rightleftharpoons Au(l)$$
    It is an endothermic process, therefore an increase in temperature will move the equilibrium forward.
    Also, upon melting, volume of metals increases and the equilibrium can be shifted forward by reducing the melting point of metals. This can be achieved by reducing the pressure.
    Therefore low pressure and high temperature favours the process.
    Option C is correct.
  • Question 5
    1 / -0
    A gas $$X$$ when dissolved in water heat is evolved. Then solubility of $$X$$ will increase:
    Solution
    $$X(g)+{ H }_{ 2 }O\rightleftharpoons X(aq);\quad -\Delta H$$
    Using Le Chaterlier's principle:
    when a system in equillibrium experiences a disturbance (such as concentration, temperature, or pressure changes), it will respond to restore a new equilibrium state by opposing the disturbance.
    An exothermic process goes into forward direct when temperature is decreased and since in the given process the gas goes into water thereby results in decrease of pressure, hence an increase in pressure will shift the equillibrium forward.
    Therefore option D is correct.
  • Question 6
    1 / -0
    The solubility product constant $$Ksp$$ of $$Mg(OH)_{2}$$ is $$9.0\times 10^{-12}$$. If a solution is $$0.010\ M$$ with respect to $$Mg^{2+}$$ ion. What is the maximum hydroxide ion concentration which could be present without causing the precipitation of $$Mg(OH)_{2}$$?
    Solution
    $$Ksp(Mg(OH)_2)=9.0\times 10^{-12}$$
    $$(Mg(OH)_2 \leftrightharpoons Mg^{2+}+2[OH]^-$$
    $$Ksp=[Mg^{2+}][OH^-]^2$$
    $$9\times 10^{-12}=(10^{-12})(OH^-)^2$$
    $$[OH^-]^2=3^2\times (10^{-5})^2$$
    $$[OH^-]=3.0\times 10^{-5}M$$
    Maximum Hydroxide-ion concentration.
  • Question 7
    1 / -0
    $$1$$ litre buffer solution $$\left( HA+NaA \right) pH=4$$ , is mixed with  $$2$$ litre buffer solution $$\left( HA+NaA \right) pH=4.3$$. $$pH$$ of resulting solution if both solutions are initially $$0.1M$$ $$MA$$.
    [Given $${ \left( { K }_{ a } \right)  }_{ HA }={ 10 }^{ -4 };\log { 2 } =0.3;\log { 3 } =0.48;\log { 5 } =0.7\quad $$]

    Solution

  • Question 8
    1 / -0
    Ammonia gas at $$15$$ atm is introduced in a rigid vessel at $$300$$K. At equilibrium, the total pressure of the vessel is found to be $$40.11$$ atm at $$300^0$$C. The degree of dissociation of $$NH_3$$ will be :
    Solution
    $$ \begin{array}{l} P_{1}=15,9+m \\ T_{1}=300 \mathrm{~K} \\ P_{1}=? \\ T_{2}=300+273=573 \mathrm{~K} \end{array} $$
     $$ \begin{array} \text { By }  P V=n R T \\ \Rightarrow \quad \frac{P V}{n T}=R+\text { const. } \\ \Rightarrow \quad \frac{P_{1} V_{1}}{n_{1} T_{1}}=\frac{P_{2} V_{2}}{n_{2} T_{2}} \end{array} $$
     $$ \begin{aligned} \Rightarrow \quad \frac{P_{1}}{T_{1}} &=\frac{P_{2}}{T_{2}} \\ \Rightarrow \quad \frac{15}{500} &=\frac{P_{2}}{573} \\ P_{2} &=28.65 \text { atm } \end{aligned} $$
     $$ \begin{array}{l} 2 \mathrm{NH}_{3} \rightleftharpoons \mathrm{N}_{2}+3 \mathrm{H}_{2} \\ (28 .65) \\ 28.65-2 \mathrm{p} \quad p \quad 3 \mathrm{p} \end{array} $$ 
    $$ \begin{aligned} \text { (a) } \varepsilon q^{n} \rightarrow 28.65-2 p+p+3 p &=28.65+2 p \\ 28 \cdot 65+2 p=40.11 \end{aligned} $$
     $$ p=5.73 $$
     $$ \begin{array}{c} \alpha=\frac{\text { Diss. Pressure }}{\text { Total pressure }}=\frac{2 \times 5.73}{28.65}=0.4 \\ \therefore \alpha=0.4 \end{array} $$
  • Question 9
    1 / -0
    Solid $$Ba{({NO}_{3})}_{2}$$ is gradually dissoved in a $$1\times {10}^{-4}M$$ $${Na}_{2}{CO}_{3}$$ solution. At what minimum conc. of $${Ba}^{-2}$$ will a precipitate of $$Ba{CO}_{3}$$ begin to form? ($${K}_{sp}$$ for $$Ba{CO}_{3}=5.1\times {10}^{-9}$$)
    Solution
    Alc to the problem 
    $$\begin{aligned} \mathrm{Na}_{2} \mathrm{CO}_{3} \longrightarrow & 2 \mathrm{Na}^{+}+\mathrm{CO}_{3}^{2-} \\ \left[\mathrm{cO}_{3}^{2-}\right] &=1 \times 10^{-4} \mathrm{M} \end{aligned} $$ 
    For, $$\mathrm{BaCO}_{3} \rightleftharpoons\left[\mathrm{Ba}^{2+}\right]+\left[\mathrm{CO}_{3}^{2-}\right]$$ 
    $$ \mathrm{KG}_{p}=\left[\mathrm{Ba}^{2+}\right] \cdot\left[\mathrm{CO}_{3}^{2-}\right] $$
    $$ \begin{aligned} \Rightarrow \quad 5.1 \times 10^{-9} &=\left[B a^{2+}\right] \cdot\left[1 \times 10^{-4}\right] \\ &\left[\begin{array}{ll} {\left[B a^{2+}\right]=5.1 \times 10^{-9+4}} \\ {\left[B a^{2 +}\right]}  =5.1 \times 10^{-5} \mathrm{M} \end{array}\right. \end{aligned} $$ 
    $$\text { (c) is correct option }$$

  • Question 10
    1 / -0
    Consider the following equilibrium system; $$2SO_{2(g)} + O_{2(g)} \rightleftharpoons 2SO_{3(g)}$$; some inert gas is added to the system at constant volume. Predict which of the following is true?
    Solution
    When an inert gas is added to an equilibrium system at constant volume, there will be an increase in the total pressure of the system. However, the concentrations of the products and reactants will not change. Therefore, there will be no effect on the equilibrium. 
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now