The slow step is the rate-determining step.
From the given rate law expression (Rate$$=k\left[ { Cl }_{ 2 } \right] \left[ { H }_{ 2 }S \right] $$), it can be said that the slow step should involve $$1$$ molecule of $${Cl}_{2}$$ and $$1$$ molecule of $${H}_{2}S$$.
If we consider mechanism (A) we find that $$1$$ molecule of $${Cl}_{2}$$ and $$1$$ molecule of $${H}_{2}S$$ participate in the reaction. Hence, the rate law expression will be
Rate$$=k\left[ { Cl }_{ 2 } \right] \left[ { H }_{ 2 }S \right] $$
If we consider mechanism (B) we find
Rate$$=k\left[ { Cl }_{ 2 } \right] \left[ { HS }^{ - } \right] ...(i)$$
For equation
$${ H }_{ 2 }S\rightleftharpoons { H }^{ + }+{ HS }^{ - }$$
$$K=\cfrac { \left[ { H }^{ + } \right] \left[ { HS }^{ - } \right] }{[ { H }_{ 2 }S] } $$
or $$\left[ { HS }^{ - } \right] =\cfrac { K\left[ { H }_{ 2 }S \right] }{ [{ H }^{ + }] } $$
Substituting this value in equation (i) we find
Rate, $$r=k[Cl_2]\dfrac{K[H_2S]}{[H^+]}=k'\dfrac{[Cl_2][H_2S]}{[H^+]}$$
This is different from given rate law expression Rate$$=k\left[ { Cl }_{ 2 } \right] \left[ { H }_{ 2 }S \right] $$.
Hence only, mechanism ($$A$$) is consistent with the given rate equation.