Self Studies

Measures of Central Tendency Test - 30

Result Self Studies

Measures of Central Tendency Test - 30
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The following table shows the frequency distribution of advertisements on T.V.
    Duration (in sec.)$$25 - 30$$ $$30 - 35$$ $$35 - 40$$$$40 - 45$$$$45 - 50$$$$50 - 55$$
    No. of advertisements$$10$$$$32$$$$15$$$$9$$$$7$$$$2$$
    Obtain mean duration of an advertisement on T.V. by assumed mean method
    Solution
    Consider the following table, to calculate mean by "assumed mean method":
    $$x_i=$$ mid value of class interval
    Let the assumed mean be $$a=42.5$$
    Class interval $$f_i$$ $$x_i$$$$d_i=x_i-a$$  $$f_id_i$$
     $$25-30$$ $$10$$ $$27.5$$ $$-15$$ $$-150$$
     $$30-35$$ $$32$$ $$32.5$$ $$-10$$ $$-320$$
     $$35-40$$ $$15$$ $$37.5$$ $$-5$$ $$-75$$
     $$40-45$$ $$9$$ $$42.5$$ $$0$$ $$0$$
     $$45-50$$ $$7$$ $$47.5$$ $$5$$ $$35$$
     $$50-55$$ $$2$$ $$52.5$$ $$10$$ $$20$$
     $$N=\Sigma f_i=75$$          
     $$\Sigma f_id_i=-490$$
    Mean, $$\overline x=a +\cfrac {\Sigma f_id_i}{N}$$
    $$\therefore \overline x=42.5 + \cfrac{-490}{75}=35.966667 $$
    $$\implies x= 35.97$$
    The mean duration of an advertisement on T.V is $$35.97$$ seconds 
    Hence, option $$D$$ is correct.
  • Question 2
    1 / -0
    The following data have been arranged in ascending order of magnitude.
    $$63, 66, 69, x, x + 2, 76, 89$$ and $$103$$.
    If the median of the given data is $$71$$, find the value of $$x$$.
    Solution
    median of the data: $$63,66,69,x,x+2,76,89,103$$ is $$71$$
    The number of observations in the data are 8. Hence, the median will be the mean of 
    $$3^{rd}$$ term and $$4^{th}$$ term,
    Thus, $$\cfrac{x + x +2}{2} = 71$$
    $$\Rightarrow 2x + 2 = 142$$
    $$\Rightarrow x = 70$$
  • Question 3
    1 / -0
    The data is $$17, 26, 60, 45, 33, 32,29, 34$$ and $$56$$. If $$26$$ is replaced by $$62$$, then the new median is
    Solution
    Arranging data in ascending order- $$17,26,29,32,33,34,45,56,60$$
    Count of observations $$=9 $$
    Median for odd number of data is the middle most observation
    So median $$= 5^{th}$$ observation $$= 33$$
    If $$26$$ is replaced by $$62$$, then the observations in ascending order will be- $$17,29,32,33,34,45,56,60,62$$.
    Again Median for odd number of data is the middle most observation
    So new median $$= 5^{th}$$ observation $$= 34$$
  • Question 4
    1 / -0
    Number of calories (in' 00) consumed daily by a sample of 15 years old boys are given below.
    Calories1000 - 15001500 - 20002000 - 25002500 - 30003000 - 35003500 - 40004000 - 4500
    No. of boys513161827104
    Obtain mean calories consumed daily by a boy by step deviation method.
    Solution
    Consider the following table, to calculate mean by "step deviation method":
    $$x_i$$=mid value of class interval
    Assumed mean $$a=2750$$
    class interval $$c=500$$
     $$ci$$ $$f_i$$ $$x_i$$ $$u_i=\dfrac{x_i-a}{c}$$ $$f_iu_i$$ 
     $$1000-1500$$ $$5$$ $$1250$$ $$-3$$ $$-15$$
     $$1500-2000$$ $$13$$ $$1750$$ $$-2$$ $$-26$$
     $$2000-2500$$ $$16$$ $$2250$$ $$-1$$ $$-16$$
     $$2500-3000$$ $$18$$ $$2750$$ $$0$$ $$0$$
     $$3000-3500$$ $$27$$ $$3250$$ $$1$$ $$27$$
     $$3500-4000$$ $$10$$ $$3750$$ $$2$$ $$20$$
     $$4000-4500$$ $$4$$ $$4250$$ $$3$$ $$12$$
    $$N=\Sigma f_i=93$$          
    $$\Sigma f_iu_i=2$$

    Mean $$\overline x=a +\dfrac {\Sigma f_iu_i}{N}\times c$$

    $$\therefore \overline x=2750 + \dfrac{2}{93} \times 500=2760.75 \approx 2761$$
    mean calories consumed daily by a boy is $$2761$$ calories. 
    Hence, option $$D$$ is correct.
  • Question 5
    1 / -0
    The A.M. of the first ten odd numbers is
    Solution
    First ten odd numbers are $$1, 3, 5, 7, 9, 11, 13, 15, 17, 19$$ respectively.
    $$A.M. (\overline {x}) = \dfrac{\text {sum of all the terms}}{\text {total number of terms}}$$
     
    $$A.M. \left(\overline { x } \right) = \displaystyle\frac{1 + 3 + 5 + 7 + 9 + 11 + 13 + 15 + 17 + 19}{10}$$
                       
                       $$= \displaystyle\frac{100}{10}$$
                             
                       $$=10$$

    $$\therefore$$ the $$A.M$$ of first ten odd numbers is $$10$$ 
  • Question 6
    1 / -0

    Directions For Questions

    Find the mean of the following data:

    ...view full instructions

    Number of plants
    0-2
    2-4
    4-6
    6-8
    8-10
    10-12
    12-14
    Number of houses
    1
    2
    1
    5
    6
    2
    3
    mean is $$8.4$$
    Is it true or false?

    Solution

    For grouped data when Class Interval is given, we find the Class Mark. 
    Class Mark $$=$$  mid point of an interval $$= \dfrac { \text{Lower limit + Upper limit}  }{ 2 }$$
     Class Mark is taken as $${ x }_{ i }$$ for each class interval.
    Find $$ { x }_{ i }{ f }_{ i }$$
    From the table, we have $$\Sigma { x }_{ i }{ f }_{ i } = 162 $$ & $$\Sigma { f }_{ i } = 20$$
    Mean $$=\dfrac { \Sigma { x }_{ i }{ f }_{ i } }{ \Sigma { f }_{ i } }$$ 
    $$= \dfrac { 162 }{ 20 } = 8.1$$

  • Question 7
    1 / -0

    Class Interval
    Frequency
    100-12
    12
    120-140
    14
    140-160
    8
    160-180
    6
    180-200
    10
    mean is 145.20
    If true then enter $$1$$ and if false then enter $$0$$
    Solution
    $$
    For\quad grouped\quad data\quad when\quad Class\quad Interval\quad \quad is\quad given,\quad we\quad find\quad the\quad Class\quad Mark.\\ Class\quad Mark\quad =\quad mid\quad point\quad of\quad an\quad interval\quad =\quad \frac { \left( Lower\quad limit\quad +\quad Upper\quad limit \right)  }{ 2 } \\ Class\quad Mark\quad is\quad taken\quad as\quad { x }_{ i }for\quad each\quad class\quad interval.\quad Find\quad { x }_{ i }{ f }_{ i }.\quad \\ From\quad the\quad table,\quad we\quad have\quad \Sigma { x }_{ i }{ f }_{ i }\quad =\quad 7260\quad \& \quad \quad \Sigma { f }_{ i }\quad =\quad 50\\ Mean\quad =\quad \frac { \Sigma { x }_{ i }{ f }_{ i } }{ \Sigma { f }_{ i } } \quad =\quad \frac { 7260 }{ 50 } \quad =\quad 145.20
    $$

  • Question 8
    1 / -0
    Find the mean marks from the following data:
    Marks
    No. of students
    Below $$10$$
    $$4$$
    Below $$20$$
    $$10$$
    Below $$30$$
    $$18$$
    Below $$40$$
    $$28$$
    Below $$50$$
    $$40$$
    Below $$60$$
    $$70$$
    Solution
    For the grouped data, when class interval is given we find class marks by using the formula
    Class mark$$(x_i)=\dfrac { \left( Lower\ limit\ + Upper\ limit \right)  }{ 2 }$$
    Find $$x_{i} f_{i}$$ and then

    Mean $$=\dfrac { \sum { x }_{ i }{ f }_{ i } }{ \sum { f }_{ i } } =\dfrac {2850}{70} =\dfrac {285}{7} =40\dfrac {5}{7}$$ marks

  • Question 9
    1 / -0
    The following data shows that the age distribution of patients of malaria in a village during a particular month. Find the average age of the patients.
    Age (in years)
    No. of cases
    5-14
    6
    15-24
    11
    25-34
    21
    35-44
    23
    45-54
    14
    55-64
    5
    65-74
    3
    Solution
     Age (in years)No. of  Cases (Fi) Mid Point (Xi) $$FiXi$$ 
     5-149.5 57 
    15-24 11 19.5 214.5 
    25-34 21 29.5 619.5 
    35-44 23 39.5 908.5 
    45-54 14 49.5 693 
    55-64 59.5 2975. 
    65-74 69.54 208.5 
     $$\ Sigma Fi=83$$  $$\Sigma FiXi =2998.5$$ 

    For grouped data when class interval is given, we find the class mark.
    Class mark $$=$$ midpoint of an interval $$=\dfrac {(Lower \quad limit + Upper \quad limit)}{2}$$
    Class mark is taken as $$x_i$$ for each class interval, find $$x_if_i$$.
    Now mean age $$=\dfrac {\Sigma x_if_i}{\Sigma f_i}=\dfrac {2998.5}{83}=36.1265=36.13$$
  • Question 10
    1 / -0
    The mean of first five prime numbers is
    Solution
    First five prime numbers are: $$2,3,5,7,11$$
    Mean $$= \cfrac{\text{Sum}}{\text{Count of Numbers}}$$
    Mean $$= \cfrac{2 + 3 + 5 + 7 + 11}{5}$$
    Mean $$= \cfrac{28}{5}$$
    Mean $$= 5.6$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now