Self Studies

Measures of Central Tendency Test - 31

Result Self Studies

Measures of Central Tendency Test - 31
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Thirty women were examined in a hospital by a doctor and the number of heart beats per minute were recorded and summarised as follows. Find the mean heart beats per minute for these women, choosing a suitable method.
    Number of heart beats per minute
    Number of women
    65-68
    2
    68-71
    4
    71-74
    3
    74-77
    8
    77-80
    7
    80-83
    4
    83-86
    2
    Solution


    No. heart beats per min    
    (Class Interval)                     ($$f_i$$)
    no. of women       
    $$x_i$$ $$x_if_i$$
    65-68 2 66.           5 133
    68-71 4 69.5 278
    71-74 3 72.5 217.5
    74-77 8 75.5 604
    77-80 7 78.5 549.5
    80-83 4 81.5 326
    83-86 2 84.5 169
    Total 30   2277
    $$Mean\ heart\ beats=\frac { \sum { { f }_{ i }{ x }_{ i } }  }{ \sum { { f }_{ i } }  } =\frac { 2277 }{ 30 } =75.92$$
  • Question 2
    1 / -0
    The following table gives the literacy rate (in percentage) of $$35$$ cities. Find the mean literacy rate.
    Literacy rate (in $$\%$$)
     $$45-55$$
     $$55-65$$ 
    $$65-75$$ 
    $$75-85$$
    $$85-95$$
    No. of cities
    $$3$$
    $$10$$
    $$11$$
    $$8$$
    $$3$$
  • Question 3
    1 / -0
    The following table shows the ages of the patients admitted in a hospital during a year:
    Age (in years)
    5-15
    15-25
    25-35
    35-45
    45-55
    55-65
    No. of patients
    6
    11
    21
    23
    14
    5
    Find  the mean of the data given above.
    Solution
    Let us find the mean of the data:
    Age (in years)
    Number of patients    $$f_i$$
    Class mark    $$x_i$$
    $$u_i=\frac {x_i-      30}{10}$$
     $$f_i\times u_i$$
    5-15
    6
    10
    -2
    -12
    15-25
    11
    20
    -1
    -11
    25-35
    21
    $$30-a$$
    0
    0
    35-45
    23
    40
    1
    23
    45-55
    14
    50
    2
    28
    55-65
    5
    60
    3
    15
    Total
    $$n=80$$


    43
    $$a=30, h=10, n=80$$ and $$\sum f_iu_i=43$$
    Mean $$=a+h\times \dfrac {1}{n}\times \sum f_iu_i=30+10\times \dfrac {1}{80}\times 43$$
    $$=30+5.37=35.37$$ years
    Thus mean $$=35.37$$ years.

  • Question 4
    1 / -0
    To find out the concentration of $$SO_2$$ in the air (in parts per million, i.e., ppm), the data was collected for 30 localities in a certain city and is presented below:
    Concentration of $$SO_2$$ (in ppm)
    Frequency
    0.00-0.04
    4
    0.04-0.08
    9
    0.08-0.12
    9
    0.12-0.16
    2
    0.16-0.20
    4
    0.20-0.24
    2
    Find the mean concentration of $$SO_2$$ in the air.
    Solution
    Concentration
    of SO2 (in ppm)
    Class Interval. 
     No. of localities
    Frequency(Fi)
     Class
    Mark(Xi)  
     Fi*Xi
     0.00-0.04 4 0.020.08 
     0.04-0.08 9 0.06 0.54
     0.08-0.12 9 0.1 0.9
     0.12-0.16 2 0.14 0.28
     0.16-0.20 4 0.18 0.72
     0.20-0.24 2 0.22 0.44
     Total 30  2.96
    $$
    Mean\quad concentration\quad of\quad { SO }_{ 2 }\quad in\quad air=\frac { \sum { { f }_{ i }{ x }_{ i } }  }{ \sum { { f }_{ i } }  } =\frac { 2.96 }{ 30 } =0.09866\quad =0.099 $$
  • Question 5
    1 / -0
    A class teacher has the following absentee record of 40 students of a class for the whole term. Find the mean number of days a student was absent.
    No. of days
    0-6
    6-10
    10-14
    14-20
    20-28
    28-38
    38-40
    No. of students
    11
    10
    7
    4
    4
    3
    1
    Solution
     No. of days (class interval) No. of students Classmark($$X_i$$)$$F_iX_i$$ 
     0-611 33 
     6-10 10 880 
     10-14 7 12 84
     14-20 4 17 68
     20-28 4 24 96
     28-38 3 33 99
     38-40 1 39 39
        
     Total 40  499
    We know that Class mark $$ = \dfrac{upper limit +lower limit}{2}$$

    Mean number of days $$ = \dfrac{\Sigma F_iX_i}{\Sigma F_i} = \dfrac {499}{40} = 12.475 $$ Days


  • Question 6
    1 / -0
    The table below shows the daily expenditure on food of 25 households in a locality.
    Daily expenditure (in Rs.)
    No. of households
    100-150
    4
    150-200
    5
    200-250
    12
    250-300
    2
    300-350
    2
    Find the mean daily expenditure on food by a suitable method.
    Solution
    The mean daily expenditure on food can be calculated using direct method,

    Daily

    [Expenditure]
    No. of households

     [Frequency]


    $$x_i$$                  


    $$f_ix_i$$
    100-150  4 125 500
    150-200  5 175 875
    200-250                12 225 2700
    250-300  2 275 550
    300-350  2 325 650
    Total     25   5275
    $$\text{Mean daily expenditure on food}=\dfrac { \sum { { f }_{ i }{ x }_{ i } }  }{ \sum { { f }_{ i } }  } $$

                                                            $$=\dfrac { 5275 }{ 25 } $$

                                                            $$=211\\ $$

  • Question 7
    1 / -0
    Consider the following distribution of daily wages of 50 workers of a factory.
    Daily wages (in Rs.)
    Number of workers
    100-120
    12
    120-140
    14
    140-160
    8
    160-180
    6
    180-200
    10
    Find the mean daily wages of the workers of the factory by using an appropriate method.
    Solution

    Daily

    wages (in Rs.) [Class Intervals]
    Number of

    workers  [ Fi]       


      Xi         Xi*Fi

    100-120 12 110  1320
    120-140 14 130 1820
    140-160 8 150 1200
    160-180 6 170 1020
    180-200 10 190 1900
    Total 40   5360
    $$
    Mean\quad daily\quad wage=\frac { \sum { { f }_{ i }{ x }_{ i } }  }{ \sum { { f }_{ i } }  } =\frac { 7260 }{ 50 } =Rs.145.2
    $$ 

  • Question 8
    1 / -0
    In a group of students, the mean weight of boys is $$65$$ kg. and mean weight of girls is $$55$$ kg. If the mean weight of all students of group is $$61$$ kg, then the ratio of the number of boys and girls in the group is
    Solution
    Let the no. of boys and girls are $$\displaystyle n_{1}$$ and $$\displaystyle n_{2}$$ respectively.
    Mean weight $$=\dfrac{n_1w_1+n_2w_2}{n_1+n_2}$$
    $$\Rightarrow \displaystyle \frac{65n_{1}+55n_{2}}{n_{1}+n_{2}}=61$$
    $$\Rightarrow 4n_{1}=6n_{2}$$
    $$\Rightarrow n_{1}:n_{2}=3:2$$
  • Question 9
    1 / -0
    The median of a set of eight numbers is $$4.5$$. Given that seven of the numbers are $$7, 2,3, 4,8,2$$ and $$1$$ find the eighth number and write down the mode of eight numbers.
    Solution
    Let the eighth number be $$x$$. 
    Then the numbers arranged in ascending order:
    $$1,2,2,4,7,8,13,x$$
    Since these are $$8$$ in number.
    Median value $$\displaystyle =\frac { \left( \frac { 8 }{ 2 }  \right) th\quad value+\left( \frac { 8 }{ 2 } +1 \right) th\quad value }{ 2 } $$
    $$\displaystyle =\frac { 4th\quad value+5th\quad value }{ 2 } $$
    $$\displaystyle =\frac { 4+7 }{ 2 } =\frac { 11 }{ 2 } =5.5$$
    $$\displaystyle \therefore $$ Mode $$= 2$$
  • Question 10
    1 / -0
    The mean of $$1, 7, 5, 3, 4$$ and $$4$$ is $$m$$. The observations $$3, 2, 4, 2, 3, 3$$ and $$p$$ have the mean $$(m - 1)$$. Find the median of the second set of data.
    Solution
    Mean $$=\displaystyle m=\frac { 1+7+5+3+4+4 }{ 6 } =\frac { 24 }{ 6 } =4$$
    Now mean of $$3,2, 4, 2, 3, 3$$ and $$p$$ is $$(m-1)=(4 -1) = 3$$
    $$\displaystyle \therefore \frac { 3+2+4+2+3+3+p }{ 7 } =3$$
    $$\displaystyle \Rightarrow \frac { 17+p }{ 7 } =3\Rightarrow 17+p=21\Rightarrow p=4$$
    $$\displaystyle \therefore $$ The observations are $$3, 2, 4, 2, 3, 3$$ and $$4$$.
    Arranged in ascending order, the numbers are $$2,2,3,3,3,4,4$$.
    Median $$\displaystyle =\left( \frac { 7+1 }{ 2 }  \right)^{th} \:\text{value}= 4^{th} \:\text{value}= 3$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now