Self Studies

Measures of Central Tendency Test - 34

Result Self Studies

Measures of Central Tendency Test - 34
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The numbers are arranged in the descending order : $$108,\,94,\,88,\,82,\,x+7,\,x-7,\,60,\,58,\,42,\,39$$. If the median is $$73$$, the value of $$x$$ is:
    Solution
    Numbers are $$108,94,88,82,x+7,x-7,60,58,42,39$$
    Median $$=73$$
    Median $$=\cfrac { { \left( \cfrac { n }{ 2 }  \right)  }+{ \left( \cfrac { n }{ 2 } +1 \right)  } }{ 2 } $$
    $$\left( \cfrac { n }{ 2 }  \right) $$th obs $$=x+7$$
    $$\left( \cfrac { n }{ 2 } +1 \right) $$th obs $$=x-7$$
    $$73=\cfrac { (x+7)+(x-7) }{ 2 } \\ =>146=2x\\ =>x=73$$
  • Question 2
    1 / -0
    Numbers $$50, 42, 35, 2x + 10, 2x - 8, 12, 11, 8$$ are written in descending order and their median is $$25$$ find $$x$$?
    Solution
    $$\displaystyle \because $$ Descending order of terms
    $$= 50, 42, 35, (2x + 10,), (2x - 8), 12, 11, 8$$
    $$\displaystyle \Rightarrow $$ Total number of terms $$= 8$$ (even)
    $$\displaystyle \therefore $$ Median = $$\displaystyle \frac{1}{2}\left [ \left(\frac{8}{2}\right)^{th}\text {term}+\left ( \frac{8}{2}+1 \right )^{th} \text{term}\right ]$$
    $$= \displaystyle \frac{1}{2}\left [ \left ( 2x+10 \right )+\left ( 2x-8 \right ) \right ]$$
    $$= \displaystyle \frac{1}{2}\left [ 4x+2 \right ]=\left ( 2x+1 \right )$$
    As per question--
    $$\displaystyle \left ( 2x+1 \right )=25$$
    $$\displaystyle \therefore x=\cfrac{25-1}{2}=12$$
  • Question 3
    1 / -0
    If the mean of x and $$\displaystyle \frac{1}{x}$$ is M, then the mean of x$$^3$$ and $$\displaystyle \frac{1}{x^3}$$ is
    Solution
    Given,
    $$M=\dfrac{x+\dfrac{1}{x}}{2}$$
    $$2M=x+\dfrac{1}{x}$$                  $$ ....... (1)$$

    On cubing both sides, we get
    $$(2M)^3=(x+\dfrac{1}{x})^3$$
    $$8M^3=x^3+\dfrac{1}{x^3}+3(x+\dfrac{1}{x})$$
    $$8M^3=x^3+\dfrac{1}{x^3}+3(2M)$$
    $$8M^3=x^3+\dfrac{1}{x^3}+6M$$
    $$x^3+\dfrac{1}{x^3}=8M^3-6M$$
    $$\dfrac{x^3+\dfrac{1}{x^3}}{2}=M(4M^2-3)$$

    Hence, this is the answer.
  • Question 4
    1 / -0
    Calculate the median for the following
    Weight in kg.20222427283031
    No. of boys810119753
    Solution
     Weight (x) No. of boys (f)cumulative frequency(c.f) 
     20
    22 10 18 
    24 11 29 
    27 38 
     2845 
    30 50 
    31 53 
    Total number of boys =53
    $$\therefore Median=\left(\frac{n+1}{2}\right)^{th}  term=\frac{53+1}{2}=\frac{54}{2}=27^{th} term$$
    according to the table the weight of each child from 19th boy to 29th boy is 24 kg.
    $$\therefore Median  =24$$ 
  • Question 5
    1 / -0
    The mean of the following frequency distribution is
    Class IntervalFrequency
    0-104
    10-206
    20-3010
    30-4016
    40-5014
    Solution
    Class
    interval
    Mid 
    point
    Freq.Diff. from
    (A=25)(d)
    fd
    0-1054-20-80
    10-20156-10-60
    20-30251000
    30-40351610160
    40-50451420280
    Total$$\sum f = 50$$$$\sum fd = 300$$
    $$(\bar x) = A +\displaystyle \frac{\sum fd}{\sum f} = 25 + \frac{300}{50} = 31$$
  • Question 6
    1 / -0
    Calculate the mode
    $$17, 13, 16, 17, 16, 21, 21, 9, 12, 17$$
    Solution
    Here the frequency of $$17$$ is highest.
    So, the mode = $$17$$
  • Question 7
    1 / -0
     C.I. 0-10 10-20 20-30 30-40 40-50
     Frequency 7 5 3 4 6
    Find the mean of the following continuous distribution
    Solution
     C.I. Frequency (f)
     Class Mark (x)
     fx
     0-10 7 535
     10-20 5 15 75
     20-30 3 25 75
     30-40 4 35 140
     40-50


    Mean $$ = \dfrac {\sum { fx} }{\sum { f }} = \dfrac { 595}{25} = 23.8 $$
     6
    $$ \sum { f} = 25 $$
     45270
    $$\sum { fx } = 595 $$

  • Question 8
    1 / -0
    The mean of the following distribution is

    Solution
     Class $$x_i$$$$ f_i$$ $$f_i.x_i$$
     0-52.5 10.0 
     5-107.5 37.5 
     10-1512.5  287.5
     15-2017.5 12 210.5 
    20-25 22.5 157.5 
     25-3027.5 137.5 
    Mean$$=\dfrac{\sum f_i.x_i}{\sum f_i}$$
    $$\Rightarrow \dfrac{10+37.5+287.5+210.5+157.5+137.5}{4+5+7+12+7+5}$$
    $$\Rightarrow \dfrac{640}{40}=16$$
  • Question 9
    1 / -0
    The mean of $$20$$ observations is $$15$$. One observation $$20$$ is deleted and two more observations are included to the data. If the mean of new set of observations is $$15$$, then find the sum of the two new observations included.
    Solution
    Mean $$ = \dfrac { \text{Sum of observations}}{\text{Total number of observations}} $$
    Given, mean of $$ 20 $$ observations $$ = 15 $$. 
    Thus, sum of $$ 20 $$ observations $$ = 15 \times 20 = 300 $$
    When $$ 20 $$ is deleted and two more observations are included in the data, sum of observation $$ = 300 - 20 +  X + Y = 280 + X + Y $$.
    And number of observations is $$ 20 - 1 + 2 = 21 $$
    Given, Mean of wages of new set of observations $$ = 15 $$
    $$ =  \dfrac {280 + X + Y }{21} = 15 $$
    $$ \Rightarrow  280 + X + Y= 15 \times 21 = 315 $$
    $$ \Rightarrow  X + Y = 315 - 280 = 35 $$
  • Question 10
    1 / -0
    The weighted arithmetic mean ofthe first $$n$$ natural numbers whose weights are equal to the corresponding numbers is given by,
    Solution
     $$x_i$$ $$x$$ Weight $$(w)$$
      $$x_1$$  $$1$$  $$1$$
      $$x_2$$  $$2$$  $$2$$
      $$x_3$$
    ....
    ....
      $$3$$  $$3$$
      $$x_n$$  $$n$$  $$n$$
    First $$n$$ natural numbers are written in the table along with their respective weight.
    Weighted arithmetic mean $$=\dfrac{\sum_{n}^{r-1}w_rx_r}{\sum_{n}^{r-1}w_r}$$
    $$=\dfrac{1\times 1+2\times 2+3\times 3+...+n\times n}{1+2+3+4+...+n}$$

    $$=\dfrac{1^2+2^2+3^2+...+n^2}{1+2+3+4+...+n}$$

    Using formula of sum of series, we get
    $$=\dfrac{n(n+1)(2n+1)}{6}\times \dfrac{2}{n(n+1)}$$

    $$=\dfrac{(2n+1)}{3}$$
    Hence, this is the required answer.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now