Self Studies

Measures of Central Tendency Test - 35

Result Self Studies

Measures of Central Tendency Test - 35
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Find the median of the following data

    Solution
     $$x$$ $$14$$$$18$$
     $$22$$$$25$$
     $$30$$
     $$f$$ $$7$$ $$10$$$$ 12$$$$ 16$$$$ 5$$
     C.F. $$7$$$$ 17$$
     $$29$$
     $$45$$
    $$50$$


    Total of frequency $$ N =50 $$

    As the total of the frequencies is even, Median will be the at the  mean of observations at $$ \dfrac {N}{2} $$ and $$ \dfrac {N}{2} + 1$$ position

    So, Median is mean of  $$ 25^{th} $$ and $$ 26^{th}$$ observation  , that is Mean of $$ 22 $$ and $$ 22  = 22 $$
  • Question 2
    1 / -0
     x 5 6 10 12 13 15
     f 7 8 15 13 9 8
    Find the median of the following data
    Solution
     $$x$$ $$5$$$$6$$ 
    $$ 10$$$$12$$ 
    $$ 13$$$$ 15$$
     $$f$$ $$7$$ $$8$$$$ 15$$ $$13$$ $$9$$$$ 8$$
     C.F. $$7$$ $$ 7+8 = 15 $$
     $$ 15+15 = 30 $$
     $$ 30 + 13 = 43 $$
    $$ 43 + 9 = 52 $$
     $$ 52 + 8 = 60 $$

    Total of frequency $$ N =60 $$

    As the total of the frequencies is even, Median will be the at the mean of observations at $$ \dfrac {N}{2} $$ and $$ \dfrac {N}{2} + 1$$ position

    So, Median is mean of  $$ 30^{th}$$ and $$ 31^{st}$$ observation, that is Mean of $$ 10 $$ and $$ 12  = 11 $$
  • Question 3
    1 / -0
    Find the arithmetic mean for the given data:

    MarksNo. of students
    $$0-10$$$$5$$
    $$10-20$$$$10$$
    $$20-30$$$$25$$
    $$30-40$$$$30$$
    $$40-50$$$$20$$
    $$50-60$$$$10$$

    Solution
    Mid-values$$(x_i)$$      No. of students$$(f_i)$$      Product$$(f_ix_i)$$
    $$5$$                                    $$5$$                                   $$25$$
    $$15$$                                 $$10$$                                 $$150$$
    $$25$$                                 $$25$$                                 $$625$$
    $$35$$                                 $$30$$                                $$1050$$
    $$45$$                                 $$20$$                                 $$900$$
    $$55$$                                 $$10$$                                 $$550$$
                                            
                                     $$\Sigma f_i=100$$                   $$\Sigma f_ix_i=3300$$


    $$\therefore$$ Arithmetic Mean $$= \displaystyle \frac{\Sigma f_ix_i}{\Sigma f_i}$$

                                    $$= \displaystyle \frac{3300}{100}$$

                                    $$ = 33$$

    Hence, the arithmetic mean is $$33.$$
  • Question 4
    1 / -0
    On Monday, a person mailed $$8$$ packages weighing an average (arithmetic mean) of $$\displaystyle 12\frac { 3 }{ 8 } $$ pounds, and on Tuesday, $$4$$ packages weighing an average of $$\displaystyle 15\frac { 1 }{ 4 } $$ pounds. What was the average weight, in pounds, of all the packages the person mailed on both days? 
    Solution
    Mean is the sum of the values divided by the total number of values in the data set.

    Given that mean of $$8$$ packages is $$12\dfrac 38=\dfrac{99}{8}$$

    $$\implies \dfrac{\text{sum of 8 packages}}{8}=\dfrac{99}{8}$$

    $$\implies \text{sum of 8 packages}={99}$$ -------(1)

    Given that mean of $$4$$ packages is $$15\dfrac 14=\dfrac{61}{4}$$

    $$\implies \dfrac{\text{sum of 4 packages}}{4}=\dfrac{61}{4}$$

    $$\implies \text{sum of 4 packages}={61}$$ --------(2)

    Total mean is $$\implies \dfrac{\text{sum of 8 packages}+\text{sum of 4 packages}}{8+4}$$

    $$=\dfrac{99+61}{12}=\dfrac{160}{12}=13\dfrac 13$$
  • Question 5
    1 / -0
    Find the arithmetic mean using direct method for the following data shows distance covered by $$120$$ passengers to perform their regular work.

    Solution
    Answer:- Using direct method
    Distance No. of passengers
    $$f_i$$ 
    $$x_i$$ $$f_i x_i$$ 
    $$5-15$$  $$30$$$$10$$ $$300$$ 
    $$15-20$$  $$20$$$$17.5$$ $$350$$ 
    $$20-35$$ $$ 30$$$$27.5$$ $$825$$
    $$35-40$$ $$40$$ $$37.5$$ $$1500$$
     $$\Sigma f_i = 120$$  $$\Sigma f_i x_i = 2975$$ 
    Arithmetic mean  $$=\cfrac{\Sigma f_i x_i}{\Sigma f_i} =\cfrac{2975}{120} = 24.79 \simeq 25\ km$$
  • Question 6
    1 / -0
    Find the arithmetic mean of the following table using direct method.

    Solution
    Arithmetic mean using direct method formula is $$\bar { x } = \dfrac { \sum { { f }_{ i }{ x }_{ i } }  }{ \sum { { f }_{ i } }  } $$
    $$\bar { x } = \dfrac { 35,000 }{ 1,000 } $$ min
    $$\bar { x } = 35   $$ min

  • Question 7
    1 / -0
    Find the mean for the following data using shortcut method.

    Solution
    Answer:- By shortcut Method

    Children
    (x) 
    Pocket Allowance
    (f) 
    d=x-A fd 
    210-4-40
    420-2-40
    6=A3000
    840280
    10504200
     $$\Sigma f = 150$$  $$\Sigma fd = 200$$ 
    Mean = $$A+\cfrac{\Sigma fd}{\Sigma f}=6+\cfrac{200}{150} ={6+1.33}=7.33$$
    B)7.33
  • Question 8
    1 / -0
    Find the mean of the following frequency distribution using direct method.

    Solution
    Answer:- Using direct  method 
    Representing the data into frequency distribution table 
    $$x_i =\text{mid point of each class interval}$$

    Class intervalNo. of workers
    $$(f_i)$$
    $$x_i$$$$f_i x_i$$
    0-5 42.5 10
     5-10 5 7.5 37.5
     10-15 612.5 75
     15-20 7 17.5 122.5
     20-25 8 22.5 180
     $$\Sigma f_i=30$$ $$\Sigma f_ix_i=425$$
    $$\therefore \; mean = \cfrac{\Sigma f_ix_i}{\Sigma f_i} =\cfrac{425}{30}=14.16$$


  • Question 9
    1 / -0
    A survey was conducted by a group of students in which they collected the following data regarding the number of plants in $$30$$ houses in a locality. Find the mean number of plants per house.

    Solution
    Given:-
    Total no. of houses $$,\Sigma f_i = 30$$
    Representing the data in frequency distribution table

    No. of plantsNo. of houses
    $$(f_i)$$
    Classmark
    $$(x_i)$$
    $$f_i x_i$$
     $$0-6$$ $$4$$ $$3$$ $$ 12$$
     $$ 6-12$$ $$6$$ $$9$$ $$54$$
     $$12-18$$ $$1$$ $$15$$ $$15$$
     $$18-24$$ $$3$$ $$21$$ $$63$$
     $$24-30$$ $$5$$ $$27$$ $$135$$
     $$30-36$$ $$6$$ $$33$$ $$198$$
     $$36-42$$ $$5$$ $$39$$ $$195$$
      $$\Sigma f_i=30$$ $$\Sigma f_i x_i = 672$$
    $$\therefore \; mean=\cfrac{\Sigma f_i x_i}{\Sigma f_i}=\cfrac{672}{30} = 22.4$$

    Hence, the mean no. of plants per house $$= 22.4$$


  • Question 10
    1 / -0
    Calculate arithmetic mean using direct method for the following data shows distance covered by $$50$$ persons to perform their work inside the factory.

    Solution
    Answer:- Using direct  method 
    Representing the data into frequency distribution table 
    $$x_i =\text{mid point of each class interval}$$

    Class intervalNo. of workers
    $$(f_i)$$
    $$x_i$$$$f_i x_i$$
    1-11 46 24
     11-21 6 16 96
     21-31 1026 260
     31-41 12 36 432
     41-51 18 46 828
     $$\Sigma f_i=50$$ $$\Sigma f_ix_i=1640$$
    $$\therefore \; mean = \cfrac{\Sigma f_ix_i}{\Sigma f_i} =\cfrac{1640}{50}=32.8$$
    Average distance covered by 50 persons = 32.8
    B)32.8

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now