Self Studies

Measures of Central Tendency Test - 37

Result Self Studies

Measures of Central Tendency Test - 37
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Estimate the mean of the given data using  Assumed meant method.

    Solution
    Answer:- Using Shortcut method

    Interval $$x = \cfrac{U.L. + L.L.}{2}$$Frequency
    d=x-A fd 
    22-32 27 12 -30 -360 
    32-42 37 -20 -140 
    42-52 47 11 -10 -110 
    52-62 57=A  3
    62-72 67  1910 190 
    72-82 77 20 120 
      $$\Sigma f=58$$  $$\Sigma fd = -300$$ 
    Mean = $$A + \cfrac{\Sigma fd}{\Sigma f} = 57+\cfrac{-300}{58} = 57 - 5.17 = 51.827 \simeq 51.83$$
    C)51.83
  • Question 2
    1 / -0
    The marks obtained by $$40$$ students of Class XII of a certain school in a Science paper consisting of $$200$$ marks are presented in table below. Find the mean of the marks obtained by the students using step deviation method.

    Solution
    Answer:- Using Shortcut Method
    Class interval width (i) = $$120-100 = 20$$

    Marks Students
    (F) 
    $$d=\cfrac{X-A}{i}$$ Fd 
    100-120 110 -2 -8 
    120-140 130 -1 -5 
    140-160 150 = A11 
    160-180 170 20 20 
      $$\Sigma F = 40$$  $$\Sigma Fd = 7$$ 
    Mean ( By step deviation formula) = $$A+\cfrac{\Sigma Fd}{\Sigma F} \times i = 150+\left(\cfrac{7}{40} \times 20 \right) = 150+3.5+ = 153.5$$
    A) Mean = $$153.5$$
  • Question 3
    1 / -0
     Class interval $$4-8$$ $$8-12$$ $$12-16$$ $$16-20$$
     No. of employees $$5$$$$10$$ $$15$$ $$20$$ 
    Find the mean of the following frequency distribution using step deviation method.

    Solution
    Answer:- By shortcut Method(Step deviation mean method)
    Class interval width $$(w) =8-4 = 4$$

    Class interval $$(i)$$$$X $$No. of employees
    $$F $$
    $$d=\cfrac{X-A}{i}$$ $$Fd $$
    $$4-8$$ $$6$$ $$5$$-$$1 $$$$-5$$
    $$8-12$$ $$10=A$$$$ 10$$$$0$$  $$0$$
    $$12-16$$$$14$$ $$15$$$$1 $$$$15$$
    $$16-20$$$$18$$$$20$$$$ 2$$$$40$$
       $$\Sigma F = 50$$ $$\Sigma Fd = 50$$ 
    Mean = $$A+\cfrac{\Sigma Fd}{\Sigma f} \times i=10+\left(\cfrac{50}{50} \times 4\right) = 10+4 = 14$$

    Hence option (D) is correct
  • Question 4
    1 / -0
    The marks scored by $$25$$ students in the exam are as follows. Find the average using Assumed mean method.

    Solution
    Marks $$X =$$ $$\cfrac{U.L.+L.L.}{2}$$Students
    $$(F)$$ 
    $$d=X-A$$$$Fd$$
    50-60 55 -20 -60 
    60-70  65 4 -10-40 
    70-80 75 $$= A$$ 8 0 0
    80-90  85 8 1080 
    90-100  95 2 2040 
      $$\Sigma F = 25$$  $$\Sigma Fd = 20$$ 
    Mean by Shortcut Method $$=A+\cfrac{\Sigma Fd}{\Sigma F}$$
    $$= 75+\cfrac{20}{25}$$
    $$=75+\cfrac{4}{5}$$
    $$= 75+0.8$$
    $$= 75.8$$
  • Question 5
    1 / -0
    Find the mean of the above frequency distribution using the step deviation method.

    Solution
    Class interval width $$i = 4-2 = 2$$

    Class interval $$X_i$$ Frequency $$F_i$$ $$u=\cfrac{X-A}{i}$$ $$F_iu_i$$ 
    $$2-4$$ $$3$$  $$11$$$$-1$$ $$-11$$ 
     $$4-6$$ $$5=A$$ $$22$$$$0$$  $$0$$
     $$6-8$$$$7$$  $$33$$$$1$$ $$33$$
     $$8-10$$ $$9$$$$44$$  $$2$$$$88$$
       $$\sum F_i = 110$$ $$\sum F_iu_i = 110$$ 
    $$\overline x = A+\cfrac{\sum fu}{\sum f} \times i$$
        $$=5+\left(\cfrac{110}{110} \times 2\right) $$
        $$= 5+2$$
        $$ = 7$$

    Hence, option $$C$$ is correct.
  • Question 6
    1 / -0
    An Egg Seller distributes eggs to the shop in a city. The number of eggs he distributes for each shop has been recorded and the data obtained was grouped into a class shown in the table below. Find the mean using sdirect method.

    Solution

    Number of eggs

    Mid-Value

     $${ f }_{ i }$$

     $${ f }_{ i }{ x }_{ i }$$

    $$0-30$$

    $$15$$

    $$40$$

    $$600$$

    $$30-60$$

    $$45$$

    $$26$$

    $$1170$$

    $$60-90$$

    $$75$$

    $$38$$

    $$2850$$

    $$90-120$$

    $$105$$

    $$12$$

    $$1260$$

    $$120-150$

    $$135$$

    $$25$$

    $$3375$$

    $$150-180$$

    $$165$$

    $$30$$

    $$4950$$

     

     

    $$\sum { { f }_{ i }=171 } $$

    $$\sum { { f }_{ i }{ x }_{ i }=14205 } $$

     $$Mean=\cfrac { \sum { { f }_{ i }x_{ i } }  }{ \sum { { f }_{ i } }  } \\ =\cfrac { 14205 }{ 171 } \\ =83.07$$

  • Question 7
    1 / -0
    Find the mean number of leaves per tree using step deviation method.

    Solution
    Answer:- 
    Class interval width (i) = 4
    No. of leaves
    No. of trees
    $$u=\cfrac{X-A}{i}$$  Fu 
    0-4 10 -1  -10
    4-8 6 = A 20  -0
    8-12 10  3030 
    12-16 14 40 80 
      $$\Sigma f = 100$$  $$\Sigma fu = 110$$ 
    Mean = $$A+\cfrac{\Sigma fu}{\Sigma f}=6+\cfrac{110}{100} \times 4 ={6+4}=10.4$$
    10.4 leaves
  • Question 8
    1 / -0
    The percentage of marks obtained by the students in a class of $$50$$ are given below. Find the mean for the following data.
    Marks$$(\%)$$$$40-50$$$$50-60$$$$60-70$$$$70-80$$$$80-90$$$$90-100$$
    Number of students$$6$$$$12$$$$14$$$$8$$$$6$$$$4$$
    Solution
     Marks       $$f_i$$             $$x_i$$                $$f_ix_i$$
    $$40-50$$     $$6$$            $$45$$                  $$270$$
    $$50-60$$     $$12$$           $$55$$                 $$660$$
    $$60-70$$     $$14$$          $$65$$                  $$910$$
    $$70-80$$     $$8$$            $$75$$                  $$600$$
    $$80-90$$     $$6$$            $$85$$                  $$510$$
    $$90-100$$    $$4$$            $$95$$                 $$380$$

    $$\Sigma f_i=50$$ $$\Sigma f_ix_i=3330$$

    We know that, the arithmetic mean using direct method is 
     $$\overline{x}=\displaystyle\frac{\Sigma f_i x_i}{\Sigma f_i}$$

    $$\overline{x}=\dfrac{3330}{50}$$

    $$\Rightarrow 66.6$$

    Therefore, the mean for the given data is $$66.6\%$$.
  • Question 9
    1 / -0
    Calculate the mean for the following table using step deviation method.

    Solution
    Answer:- By shortcut Method
    Class interval width (i) = $$5-2 = 3$$

    Age

    No. of children
    Mid Value
    (X) 
    $$u=\cfrac{X-A}{i}$$ Fu
    2-5 3.5 -1 -1 
    5-8  2 6.5 = A
    8-11  3 9.5
    11-14 4 12.5
    14-17  15.515 
     $$\Sigma F = 15$$   $$\Sigma Fu = 25$$ 
    By step deviation method 
    Mean = $$A+\cfrac{\Sigma fu}{\Sigma f} \times i=6.5+\cfrac{25}{15} \times 3 ={6.5+5}=11.5 \simeq 12$$
    B) 12
  • Question 10
    1 / -0
    Find the Arithmetic mean of the following data by Assumed mean method.

    Solution
    The above table represents the given data.
    Let us take the assumed mean, $$a = 25$$
    We know that, by assumed mean method, the mean of the distribution is given by:

    $$\bar { x } =a+\dfrac { \sum { { f }_{ i }{ d }_{ i } }  }{ \sum { { f }_{ i } }  } $$

    $$\therefore \  \bar { x } =25+\left[ \dfrac { 520 }{ 65 }  \right] =25+8$$

    $$ \bar { x } =33$$

    Hence, the mean of the given distribution, by assumed mean method, is $$33$$.

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now