Self Studies

Measures of Central Tendency Test - 38

Result Self Studies

Measures of Central Tendency Test - 38
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The distribution of income of $$60$$ teachers in a school are given below. Find the Arithmetic mean of the following data by Asumed mean method.

    Solution
    Let us first construct the table.
    Let us take the assumed mean, $$a = 275$$
    $$\bar { x } =a+\dfrac { \sum { { f }_{ i }{ d }_{ i } }  }{ \sum { { f }_{ i } }  } $$
    $$\bar { x } =275+\left[ \dfrac { -600 }{ 60 }  \right] =275-10$$
    $$\bar { x } =265$$

  • Question 2
    1 / -0
    Calculate the average income of the workers per week using step deviation method.

    Solution

    Weekly Income

    h=200

    Mid-point

    Number of workers

    $${ d }_{ i }={ x }_{ i }-a$$ 

     $${ u }_{ i }=\cfrac { { x }_{ i }-a }{ h } $$

     $${ f }_{ i }{ u }_{ i }$$

    200-400

    300

    4

    -200

    -1

    -4

    400-600

    500(a)

    6

    0

    0

    0

    600-800

    700

    2

    200

    1

    2

    800-1000

    900

    8

    400

    2

    16

     

     

    $$\sum { { f }_{ i } } =20$$ 

     

     

     14

    Mean $$=a+\cfrac { \sum { { f }_{ i }u_{ i } }  }{ \sum { { f }_{ i } }  } \times h\\ =500+\cfrac { 14 }{ 20 } \times 200\\ =500+140\quad \\ =640Ans$$
  • Question 3
    1 / -0
    Find the mean of following frequency distribution using step deviation method.

    Solution
    Answer:- 
    Class interval width $$(W)=21-11 = 10$$

    Converting the given data into frequency distribution table:
     1. Write the mid-point of each interval $$(X_i)$$.
    2. Consider any value of the $$X_i$$ as $$A$$ or Assumed mean.
    3. Find deviation $$(d_i)$$ of each value of $$X$$ from assumed mean as defined in the table.
    4. Multiply each valye of $$d_i$$ with the corresponding frequency $$f_i$$.

    Class interval $$X_i$$ No. of employees
    $$f_i$ 
    $$d_i=\cfrac{X-A}{W}$$
    $$f_id_i$$
    11-21 16 -2 -4 
    21-31 26 -1 -4 
    31-41 36=A 
    41-51 46  1
    51-61 56  10 220 
      $$\Sigma f = 30$$  $$\Sigma fd = 20$$ 
    5. Calculate mean using the formula below:
    Mean = $$A+\cfrac{\Sigma fd}{\Sigma f}=36+\cfrac{20}{30} \times 10 ={36+6.66}=42.66$$
    Hence, option C is correct.
  • Question 4
    1 / -0
    Find the mean using step deviation method.

    Solution

    x

    Mid-point

    (frequency)

    $${ d }_{ i }={ x }_{ i }-6$$

     $${ u }_{ i }=\cfrac { { x }_{ i }-6 }{ 4 } $$

    $${ f }_{ i }{ u }_{ i }$$ 

    0-4

    2

    1

    -4

    -1

    -1

    4-8

    6 (a)

    2

    0

    0

    0

    8-12

    10

    3

    4

    1

    3

    12-16

    14

    4

    8

    2

    8

     

     

    10

     

     

    $$\sum { { f }_{ i }{ u }_{ i } } =10$$=10

    Mean $$=a+\cfrac { \sum { { f }_{ i }u_{ i } }  }{ \sum { { f }_{ i } }  } \times h\\ =6+\cfrac { 10 }{ 10 } \times 4\\ =10\quad Ans$$
  • Question 5
    1 / -0
    Calculate the mean of the following data with the help of Assumed method.

    Solution
    Let us first construct the table.
    Let us take the assumed mean, $$a = 5$$
    $$\bar { x } =a+\dfrac { \sum { { f }_{ i }{ d }_{ i } }  }{ \sum { { f }_{ i } }  } $$
    $$\bar { x } =5+\left[ \dfrac { 85.12 }{ 33 }  \right] =5+2.58$$
    $$\bar { x } =7.58$$

  • Question 6
    1 / -0
    In a study on a certain population, the following data was given.
    Population (X)
    2000-2001
    2001-2002
    2002-2003
    2003-2004
    2004-2005
    2005-2006
    2006-2007
    Number of people
    10
    20
    30
    40
    50
    60
    70

    Find the average number of population using step deviation method.
    Solution
     XMidpoint (X) Frequency (F) i=class interval width A=2003.5 Assumed mean u=$$\dfrac{x-A}{i}$$ fu
     2000-20012000.5 10 2003.5 -3 -30 
    2001-2002 2001.5 20 2003.5 -2 -40 
    2002-2003 2002.5 30 2003.5 -1 -30 
    2003-2004 2003.5=A 40 2003.5  0
    2004-2005 2004.5 50 2003.5 50 
    2005-2006 2005.5 60 2003.5 120 
    2006-2007 2006.5 70 2003.5 210 
      $$\Sigma f=280$$    $$\Sigma fu=280$$ 

    The formula used for arithmetic mean of grouped data by step deviation method is, $$\overline {X} =A + \dfrac{\sum fu}{\sum f} \times i$$ 
    $$A =$$ Assumed mean of the given data
    $$\sum$$ = Summation of the frequencies given in the grouped data
    $$\sum fu$$ = Summation of the frequencies and deviation of a given mean data
    $$u = \dfrac{(x - A)}{i}$$
    $$i =$$ Class interval width
    $$\overline {X}$$ = arithmetic mean
    $$\overline {X} =2003.5 +\dfrac{280}{280}\times 1$$
    $$= 2003.5 + 1$$
    $$= 2004.5$$ $$\approx$$ $$2005$$
  • Question 7
    1 / -0
    The frequency distribution of marks in English are given in the table:
    Marks
    50-60
    60-70
    70-80
    80-90
    Number of students
    12
    24
    14
    10
    Find the mean by step deviation method.
    Solution
     $$X$$Mid point(x) Frequency (F) i=class interval width A=65 Assumed mean u=$$\dfrac{x-A}{i} $$ fu
     $$50-60$$$$55$$ $$12$$ $$10$$ $$65$$ $$-1$$ $$-12$$ 
     $$60-70$$$$65=A$$ $$24$$ $$10$$ $$65$$ $$0$$ $$0$$ 
    $$70 -80$$ $$75$$ $$14$$$$10$$ $$65$$ $$1$$ $$14$$ 
    $$80-90 $$$$85$$ $$10$$ $$10$$ $$65$$ $$2$$ $$20$$ 
      $$\Sigma f=60$$    $$\Sigma fu=22$$ 

    The formula used for arithmetic mean of grouped data by step deviation method is, $$\overline {X} =A + \dfrac{\sum fu}{\sum f} \times i$$ 
    $$A =$$ Assumed mean of the given data
    $$\sum f=$$  Summation of the frequencies given in the grouped data
    $$\sum fu=$$  Summation of the frequencies and deviation of a given mean data
    $$u= \dfrac{(x - A)}{i}$$
    $$i =$$ Class interval width
    $$\overline {X}=$$  arithmetic mean
    $$\overline {X} =65 +\dfrac{22}{60}\times 10$$
    $$= 65 + 3.666$$
    $$= 68.666$$ $$\approx$$ $$69$$ marks
  • Question 8
    1 / -0
    Calculate the arithmetic mean for the following birthday gifts using direct method.
    Children
    0-12 
    12-24
    24-36
    36-48
    48-60
    Birthday gifts
    3
    5
    7
    9
    11

    Solution

    Children

    Birthday gifts$$({ f }_{ i }$$)

     $$x_{ i }$$

    $${ f }_{ i }x_{ i }$$ 

    0-12

    3

    6

    18

    12-24

    5

    18

    90

    24-36

    7

    30

    210

    36-48

    9

    42

    378

    48-60

    11

    54

    594

     

     

    $$\sum { { f }_{ i } } =35$$ $$\sum { { f }_{ i }x_{ i } } =1290$$
    $$Mean=\cfrac { \sum { { f }_{ i }x_{ i } }  }{ \sum { { f }_{ i } }  } \\ =\cfrac { 1290 }{ 35 } =36.85$$
  • Question 9
    1 / -0
    Find the arithmetic mean using step deviation method for the following. The data shows distance covered by $$40$$ passengers to perform their work. (Round off your answer to the nearest whole number).
    Distance (km)
    1-5
    5-9
    9-13
    13-17
    17-21
    21-25
    25-29
    Number of passengers
    2
    4
    6
    8
    10
    5
    5

    Solution
     Distance (km)Mid point $$x$$ Number of passengers $$f$$ $$i$$=class interval width $$A$$= Assumed mean $$u=\dfrac{x-A}{i}$$ $$fu$$
     1-511 -2 -4 
    5-9 11 -1 -4 
    9-13 11 11 
    13-17 15 11 
    17-21 19 10 11 20 
    21-25 23 11 15 
    25-29 27 11 20 
      $$\Sigma f=40$$    $$\Sigma f u=55$$ 
    The formula used for arithmetic mean of grouped data by step deviation method is, $$\overline {x} =A + \frac{\sum fu}{\sum f} \times i$$ 
    A = Assumed mean of the given data
    $$\sum$$ = Summation of the frequencies given in the grouped data
    $$\sum fu$$ = Summation of the frequencies and deviation of a given mean data
    $$u = \frac{(x - A)}{i}$$
    $$i =$$ Class interval width
    $$\overline {x}$$ = arithmetic mean
    $$\overline {x} =11 +\frac{55}{40}\times 4$$
        $$= 11 + 5.5$$
        $$= 16.5$$ $$\approx$$ $$17$$
  • Question 10
    1 / -0
    Calculate the mean for the following data using step deviation method:
    Class interval (X)
    0-10
    10-20
    20-30
    30-40
    40-50
    50-60
    60-70
    Frequency
    15
    10
    15
    20
    25
    30
    35
    Round off your answer to the nearest whole number.
    Solution
    Consider the following table, to calculate mean by "step deviation method":
    $$x_i$$=mid value of class interval
    Assumed mean $$a=35$$
    class interval $$c=10$$
     $$ci$$ $$f_i$$ $$x_i$$ $$u_i=\dfrac{x_i-a}{c}$$  $$f_iu_i$$
     $$0-10$$ $$15$$ $$5$$ $$-3$$ $$-45$$
     $$10-20$$ $$10$$ $$15$$ $$-2$$ $$-20$$
     $$20-30$$ $$15$$ $$25$$ $$-1$$ $$-15$$
     $$30-40$$ $$20$$ $$35$$ $$0$$ $$0$$
     $$40-50$$ $$25$$ $$45$$ $$1$$ $$25$$
     $$50-60$$ $$30$$ $$55$$ $$2$$ $$60$$
     $$60-70$$ $$35$$ $$65$$ $$3$$ $$105$$
     $$N=\Sigma f_i=150$$          
     $$\Sigma f_iu_i=110$$

    Mean $$\overline x=a +\frac {\Sigma f_iu_i}{N}\times c$$

    $$\therefore \overline x=35 + \dfrac{110}{150} \times 10=42.3334 \approx 42$$
    Hence, option $$B$$ is correct.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now