Self Studies

Measures of Central Tendency Test - 39

Result Self Studies

Measures of Central Tendency Test - 39
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
     Marks0-5 5-10 10-15 15-20 20-25 25-30 30-35 35-40 40-45 45-50 
    Frequency 10 11 14 19 15 13 
    For the following distribution, find the mean using step deviation method. (Round off your answer to the nearest whole number)
    Solution
     XMid point (x) Frequency (F) i=class  interval width A=22.5 Assumed mean u=$$\dfrac{x-A}{i}$$ fu
    0-5 2.5 22.5 -4 -12 
    5-10 7.5 22.5 -3 -15 
    10 -1512.5 22.5 -2 -14 
    15-20 17.5 22.5 -1 -8 
    20-25 22.5=A 10 22.5 
    25-30 27.5 11 22.5 11 
    30-35 32.5 14 22.5 28 
    35-40 37.5 19 22.
    57 
    40-45 42.5 15 22.5 60 
    45-50 47.5 13 22.5 65 
      $$\Sigma f=105$$    $$\Sigma fu=172$$ 

    The formula used for arithmetic mean of grouped data by step deviation method is, $$\overline {X} =A + \dfrac{\sum fu}{\sum f} \times i$$ 
    $$A =$$ Assumed mean of the given data
    $$\sum$$ = Summation of the frequencies given in the grouped data
    $$\sum fu$$ = Summation of the frequencies and deviation of a given mean data
    $$u= \dfrac{(x - A)}{i}$$
    $$i =$$ Class interval width
    $$\overline {X}$$ = arithmetic mean
    $$\overline {X} =22.5 +\dfrac{172}{105}\times 5$$
    $$= 22.5 + 8.19$$
    $$= 30.69$$ $$\approx$$ $$31$$
  • Question 2
    1 / -0
     Marks0-10 10-20 20-30 30-40 40-50 50-60 60-70 70- 8080-90 90-100 
     Frequency 9 10 12 6

    Find the mean mark using step deviation method:
    Solution
     XMid Point (X) Frequency (F) i=class interval width A=45 Assumed mean u=$$\dfrac{x-A}{i}$$ fu 
     0-1010 45 -4 -12 
    10-20 15 10 45 -3 -15
    20-30 25 10 45 -2 -12 
    30-40 35 10 45 -1 -7 
    40-50 45=A10 45 
    50-60 55 10 45 
    60-70 65 10 10 45 20 
    70-80 75 12 10 45 36 
    80-90 85 10 45 24 
    90-100  9510 45 20 
      $$\Sigma f=70$$    $$\Sigma fu=63$$ 

    The formula used for arithmetic mean of grouped data by step deviation method is, $$\overline {X} =A + \dfrac{\sum fu}{\sum f} \times i$$ 
    $$A =$$ Assumed mean of the given data
    $$\sum$$ = Summation of the frequencies given in the grouped data
    $$\sum fu$$ = Summation of the frequencies and deviation of a given mean data
    $$u = \dfrac{(x - A)}{i}$$
    $$i =$$ Class interval width
    $$\overline {X}$$ = arithmetic mean
    $$\overline {X} =45 +\dfrac{63}{70}\times 10$$
    $$= 45 + 9$$
    $$= 54$$
  • Question 3
    1 / -0
    You grew sixty plants using special soil. You measure their lengths and the values are tabulated below.
    Length(cm)$$120-125$$$$125-130$$$$130-135$$$$135-140$$$$140-145$$$$145-150$$
    Number of plants$$8$$$$10$$Y$$16$$$$8$$$$12$$

    The mean length of the plants is $$136$$cm. Find y in the table.

    Solution
    Length(cm)     $$(f_i)$$      $$x_i$$              $$f_ix_i$$
    $$120-125$$     $$8$$        $$122.5$$         $$122.5\times 8=980$$
    $$125-130$$     $$10$$        $$127.5$$        $$127.5\times 10=1275$$
    $$130-135$$     Y          $$132.5$$       $$y\times 132.5=132.5y$$
    $$135-140$$     $$16$$        $$137.5$$         $$137.5\times 16=2200$$
    $$140-145$$     $$8$$          $$142.5$$        $$142.5\times 8=1140$$
    $$145-150$$     $$12$$        $$147.5$$         $$147.5\times 12=1770$$

    $$\Sigma f_i=60$$  $$\Sigma f_ix_i=7365+795y$$
    Arithmetic mean using direct method formula is $$\overline{x}=\displaystyle\frac{\Sigma f_i x_i}{\Sigma f_i}$$

    $$136 = (7365 + 795y)/60$$
    $$136 \times 60 = 7365 + 132.5y$$
    $$ 8160 - 7365 = 132.5y$$
    $$y = \frac{795}{132.5}$$
    $$y = 6$$
    Therefore, the value of y is $$6$$.
  • Question 4
    1 / -0
    The ages of the $$115$$ people who live on an apartment are grouped as follows$$:$$  The mean length of the plants is $$33.43$$years using direct method. Find y in the table.
    Age(years)Number of people
    $$0-10$$$$10$$
    $$10-20$$$$15$$
    $$20-30$$$$26$$
    $$30-40$$Y
    $$40-50$$$$23$$
    $$50-60$$$$16$$
    $$60-70$$$$3$$
    $$70-80$$$$1$$
    Solution
    Length(cm)  No. of plants$$(f_i)$$ Mid point $$x_i$$ $$f_ix_i$$
    $$0-10$$    $$10$$ $$5$$ $$10\times 5=50$$
    $$10-20$$  $$15$$ $$15$$ $$15\times 15=225$$ 
    $$20-30$$  $$26$$ $$25$$ $$26\times 25=650$$
    $$30-40$$  $$y$$ $$35$$ $$y\times 35=35y$$
    $$40-50$$  $$23$$ $$45$$ $$23\times 45=1035$$
    $$50-60$$  $$16$$ $$55$$ $$16\times 55=880$$
    $$60-70$$  $$3$$ $$65$$ $$3\times 65=195$$ 
    $$70-80$$  $$1$$ $$75$$ $$1\times 75=75$$
    $$\Sigma f_i=115$$      $$\Sigma f_ix_=3110+35y$$

    Arithmetic mean using direct method formula is 
     $$\overline{x}=\displaystyle\frac{\Sigma f_i x_i}{\Sigma f_i}$$

    $$33.43 = (3110 + 35y)/115$$

    $$433.43 \times 115 = 3110 + 35y$$

    $$3844.45 - 3110 = 35y$$

    $$y = 734.45/35$$

    $$y = 20.9$$

    Therefore, approximately the value of $$y$$ is $$21.$$
  • Question 5
    1 / -0
    Using step deviation method find the mean.
    X
    20-40
    40-60
    60-80
    80-100
    frequency
    4
    8
    12
    16

    Solution
     XMid point (X) Frequency (F) i=class interval width A=50 Assumed Means u=$$\dfrac{x-A}{i}$$ fu
     20-4030 420 50 -1 -4 
    40-60 50=A 20 50 
    60-80 70 12 20 50 12 
    80-100 90 16 20 50 32 
      $$\Sigma f=40$$    $$\Sigma f u=40$$ 

    The formula used for arithmetic mean of grouped data by step deviation method is, $$\overline {X} =A + \dfrac{\sum fu}{\sum f} \times i$$ 
    $$A =$$ Assumed mean of the given data
    $$\sum$$ = Summation of the frequencies given in the grouped data
    $$\sum fu$$ = Summation of the frequencies and deviation of a given mean data
    $$u = \frac{(x - A)}{i}$$
    $$i =$$ Class interval width
    $$\overline {X}$$ = arithmetic mean
    $$\overline {X} =50 +\dfrac{40}{40}\times 20$$
    $$= 50 + 20$$
    $$= 70$$
  • Question 6
    1 / -0
    Find the measures of central tendency fro the data set $$2, 4, 5, 1, 7, 2, 3$$.
    Solution
    Mean, median and mode of a data set are the measures of central tendency.
    Step 1: Mean $$=$$ $$\dfrac{\sum X}{n}$$
    $$\sum X$$ $$=$$ sum of the data values.
    $$n =$$ number of the data values
    Mean $$=$$ $$\dfrac{2 + 4+5+1+7+2+3}{7}=3.42$$
    Step 2: The data set in the ascending order is $$1, 2, 2, 3, 4, 5, 7 $$
    So, Median of the set is $$3$$. [Median is the middle data value of the ordered set.]
    Step 3: Mode is the data value(s) that appear most often in the data set. So, the modes of the data set are $$2$$.
    So, the measures of central tendency of the given set of data are mean $$= 3.42$$, median $$= 3$$ and mode $$= 2$$.
  • Question 7
    1 / -0
    The measure of central tendency of mean is affected by
    Solution
    The measure of Central tendency of mean is affected by $$outlers$$ , 
    because outliers are observation that lies on abnormal distance from 
    other values in a random sample data.
  • Question 8
    1 / -0
    If the data set is perfectly normal, the mean, median and mode are _____to each other.
    Solution
    Since , when data is Normal it will be in $$bell shape$$ and also 
    $$symmetrical$$. In that case $$Median$$ , $$Mean$$ & $$Mode$$ of data are $$Equal$$.
  • Question 9
    1 / -0
    When the mean is the best measure of central tendency?
    Solution
    $$\Rightarrow$$  The mean is usually the best measure of central tendency to use when your data distribution is continuous and symmetrical, such as when your data is normally distributed.
    $$\Rightarrow$$  However, it all depends on what you are trying to show from your data. 
    $$\Rightarrow$$   The mean is equal to the sum of all the values in the data set divided by the number of values in the data set.
    $$\overline{x}=\dfrac{x_1+x_2+x_3+...x_n}{n}$$
  • Question 10
    1 / -0
    If the average (arithmetic mean) of $$t$$ and $$(t+2)$$ is $$x$$ and if the average of $$t$$ and $$(t-2)$$ is $$y$$, what is the average of $$x$$ and $$y$$?
    Solution
    Given, the average (arithmetic mean) of $$t$$ and $$t+2$$ is $$x$$ and the average of $$t$$ and $$ t−2$$ is $$y$$ 

    Then $$x=\dfrac{t+(t+1)}{2}=\dfrac{2t+1}{2}$$

    And $$y=$$ $$y=\dfrac{t+(t-1)}{2}=\dfrac{2t-1}{2}$$

    Then average $$x$$ and $$y =$$ $$\dfrac{x+y}{2}=\dfrac{\frac{2t+1}{2}+\frac{2t-1}{2}}{2}=\dfrac{2t+1+2t-1}{2\times 2}=\dfrac{4t}{4}=t$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now