Self Studies

Measures of Dispersion Test - 16

Result Self Studies

Measures of Dispersion Test - 16
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Fisher Price Index Number = ?

    Solution
    Fisher Price Index Number
    $$P^{p}_{01} = \sqrt{P^{l}_{01}\times P^{p}_{01}} = \sqrt{(221.98\times216.3)\times{100}} = 219.12$$.
  • Question 2
    1 / -0
    Find the mean and standard deviation of the following observations: X $$=2, 5, 7, 8, 13$$.
    Solution
    $$\displaystyle\frac{2+5+7+8+13}{5}=7$$
    $$\sqrt{\displaystyle\frac{4+25+49+64+169}{5}}-49=3.63$$.
  • Question 3
    1 / -0
    Let $${ x }_{ 1 },{ x }_{ 2 },.....{ x }_{ n }$$ be $$n$$ observations with mean $$m$$ and standard deviation $$s$$. Then the standard deviation of the observations $$a{ x }_{ 1 },a{ x }_{ 2 },.....a{ x }_{ n }$$, is
    Solution
    $$S.D(ax) = \sqrt{E[ax-a\bar{x}]^2}=\sqrt{E[a(x-\bar{x})^2]}=\sqrt{a^2.E[(x-\bar{x})^2]}=|a|.\sqrt{E[(x-\bar{x})^2]}=|a|.S.D(x)=|a| s$$
  • Question 4
    1 / -0
    If a variable $$x$$ takes values $$0,1,2,....n$$ with frequencies proportional to the binomial coefficients $${ _{  }^{ n }{ C } }_{ 0 },{ _{  }^{ n }{ C } }_{ 1 },{ _{  }^{ n }{ C } }_{ 2 },......{ _{  }^{ n }{ C } }_{ n }$$, then mean of distribution is 
    Solution
    Here,  $$\displaystyle \mu1 '=\frac{\sum r\frac{n}{r}^{n-1}C_{r-1}}{\sum ^{n}C_{r}}$$ 
    $$\displaystyle =\frac{n.2^{n-1}}{2^{n}}=\frac{n}{2}$$
    and 
    $$\displaystyle \mu 2'=\frac{1}{2^{n}}\sum_{0}^{n}\left\{ \left ( r-1 \right )+r \right
    \}^{n}C_{r}$$  
    $$\displaystyle=\frac{1}{2^{n}}\sum_{0}^{n}r\left ( r-1 \right )^{n}C_{r}+\frac{n}{2}$$ 
    $$\displaystyle =\frac{1}{2^{n}}\sum_{0}^{n}r\left ( r-1 \right )\frac{n\left ( n-1 \right )}{r\left ( r-1 \right )}^{n-2}C_{r-2}+\frac{n}{2}$$ 
    $$\displaystyle =\frac{n\left ( n-1 \right)}{2^{n}}.2^{n-2}+\frac{n}{2}$$ 
    $$\displaystyle =\frac{n\left ( n-1 \right )}{4}+\frac{n}{2}$$ 
    $$\therefore$$ Variance $$\displaystyle \sigma^2=\mu 2'-\left (\mu 1' \right )^{2}$$ $$\displaystyle =\frac{n\left ( n-1 \right )}{4}+\frac{n}{2}-\left ( \frac{n}{2} \right )^{2}=\frac{n}{4}$$
  • Question 5
    1 / -0
    If the mean deviation about mean $$1,1+d,1+2d,....1+100d$$ from their mean is $$255$$, then the $$d$$ is equal to 
    Solution
    Clearly given observation is in A.P, and have $$101$$ terms.
    $$\therefore$$ Mean $$\displaystyle =\frac{1}{2}\left \{ 1+1+100d\right \}=1+50d$$
    And thus mean deviation about mean $$\displaystyle =\frac{1}{101}\sum \left | x-\bar{x} \right |$$ $$\displaystyle =\frac{1}{101}.2d\left ( 1+2+3\cdots +50 \right )$$ $$\displaystyle =\frac{50\left ( 51 \right )d}{101}=255$$ (given)
    $$\Rightarrow d = 10.1$$
  • Question 6
    1 / -0
    The mean deviation of the series $$a,a+d,a+2d+......,a+(2n-1)d,a+2nd$$ about the mean is
    Solution
    Mean $$\displaystyle\overline{x}=\frac{(a)+(a+d)+(a+2d)+...+(a+2nd)}{2n+1}$$
    where $$\displaystyle\overline{x}=\frac{\sum x_i}{n}$$
    Then, $$\displaystyle\frac{\frac{2n+1}{2}(a+a+2nd)}{2n+1}$$


    From an A.P. $$\displaystyle S_n = \frac{n}{2} (a+l)$$   which gives $$\overline{x} = a+nd$$
    The series being a,a+d,a+2d,...,a+(n-1)d,a+nd,a+(n+1)d,...,a+2nd
    Mean deviation from the mean 
    = $$\displaystyle\frac{1}{N} \sum f_i [x_i- \overline{x}]$$
    = $$\displaystyle\frac{1}{2n+1} \sum [x_i -a-nd]$$
    = $$\displaystyle\frac{1}{2n+1} [nd+(n-1)d+(n-2)d+...+d+0+d+...+nd]$$
    = $$\displaystyle\frac{2d}{2n+1} [n+(n-1)+(n-2)+...1]$$
    = $$\displaystyle\frac{2d}{2n+1} .\frac{n(n+1)}{2} = \frac{n(n+1)d}{2n+1}$$
  • Question 7
    1 / -0
    Consider the frequency distribution
    Class interval:
    0-6
    6-12
    12-18
    Frequency:
    2
    4
    6
    The variance of the above frequency distribution, is
    Solution
    Class interval$$f_i$$$$x_i$$$$d_i={x_i-A}$$$$d_i^2$$$$f_id_i^2$$$$f_id_i$$
    0-623-63672-12
    6-12490000
    12-1861563621636
    Here,$$N=\sum {f_i }=12$$
    $$\sum {f_id_i^2}=288$$
    $$\sum {f_id_i}=24$$

    Now, variance $$\displaystyle { \sigma  }^{ 2 }=\frac { \sum { f_{ i }d_{ i }^{ 2 } }  }{ N } -{ \left( \frac { \sum { f_{ i }d_{ i } }  }{ N }  \right)  }^{ 2 }$$

    $$\Rightarrow \displaystyle { \sigma  }^{ 2 }=\frac { 288 }{ 12 } -{ \left( \frac { 24 }{ 12 }  \right)  }^{ 2 }$$

    $$\Rightarrow { \sigma  }^{ 2 }=20$$
  • Question 8
    1 / -0
    If a variable $$X$$ takes values $$0,1,2,....,n$$ with frequencies $${ _{  }^{ n }{ C } }_{ 0 },{ _{  }^{ n }{ C } }_{ 1 },{ _{  }^{ n }{ C } }_{ 2 },......{ _{  }^{ n }{ C } }_{ n }\quad $$ respectively, then S.D. is equal to :
    Solution
    Here,  $$\displaystyle \mu1'$$ $$=\frac{\sum r\frac{n}{r}^{n-1}C_{r-1}}{\sum ^{n}C_{r}}$$ $$\displaystyle $$
    and 
    $$\displaystyle \mu 2' $$$$\displaystyle=\frac{1}{2^{n}}\sum_{0}^{n}r\left ( r-1 \right )^{n}C_{r}+\frac{n}{2}$$  

    $$\displaystyle =\frac{1}{2^{n}}\sum_{0}^{n}r\left ( r-1 \right )\frac{n\left ( n-1
    \right )}{r\left ( r-1 \right )}^{n-2}C_{r-2}+\frac{n}{2}$$ $$\displaystyle =\frac{n\left ( n-1 \right)}{2^{n}}.2^{n-2}+\frac{n}{2}$$ $$\displaystyle =\frac{n\left ( n-1 \right )}{4}+\frac{n}{2}$$ 

    $$\therefore$$ Variance $$\displaystyle \sigma^2=\mu 2'-\left (\mu 1' \right )^{2}$$ $$\displaystyle =\frac{n\left ( n-1 \right )}{4}+\frac{n}{2}-\left ( \frac{n}{2} \right )^{2}=\frac{n}{4}  \mbox{or}  S.D = \sigma = \sqrt{\sigma^2} = \frac{\sqrt{n}}{2}$$
  • Question 9
    1 / -0
    Mean deviation for $$n$$ observations $${ x }_{ 1 },{ x }_{ 2 },.....{ x }_{ n }$$ from their mean $$\bar { X } $$ is given by:
    Solution
    It is fundamental concept that mean deviation of $$n$$ observations $$x_1, x_2, x_3, ......x_n$$ about mean $$\bar{X}$$ is given by, $$\displaystyle \frac{1}{n} \sum_{i=1}^{i=n} |x_i-\bar{X}|$$
  • Question 10
    1 / -0
    The Mean deviation about A.M. of the numbers $$3, 4, 5, 6, 7 $$ is :
    Solution
    Mean deviation is defined as the average of the absolute deviation of the observations from their mean.
    Here, the arithmetic mean of the given observations is $$\dfrac{3 + 4 + 5 + 6 + 7}{5} = 5$$
    Thus, mean deviation = $$\dfrac{|3 - 5| + |4 - 5| + |5 - 5| + |6 - 5| + |7 - 5|}{5} = \dfrac{6}{5} = 1.2$$
    Hence, option 'C' is correct.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now