Self Studies

Measures of Dispersion Test - 17

Result Self Studies

Measures of Dispersion Test - 17
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If the mean deviation about the median of the numbers $$a,2a,3a,.....50a$$ is $$50$$, then $$\left| a \right| $$ equals

    Solution
    Given data is 
    $$a,2a, 3a,....49a,50a$$
    Here, $$n=50 (even)$$
    So, median $$M= \dfrac{\text{value of }25^{th}\text{observation}+\text{value of }26^{th}\text{observation}}{2}$$
    $$M=\dfrac{25a+26a}{2}=25.5a$$

    Mean deviation about median $$M.D=\dfrac{\sum |x_i-25.5a|}{50}$$
    $$\Rightarrow 50=\dfrac{|a-25.5a|+|2a-25.5a|+.......+|24a-25.5a|+|25a-25.5a|+|26a-25.5a|+.....|50a-25.5a|}{50}$$

    $$\Rightarrow 2500=|a|+2(1.5+2.5+.....24.5)|a|$$

    $$\Rightarrow 2500=|a|+2\times 12 (3+23)|a|$$
    $$\Rightarrow |a|=\dfrac{2500}{625}=4$$

  • Question 2
    1 / -0

    Directions For Questions

    The standard deviation of variate $$x$$ is the square root of the A.M. of the squares of all deviations of $$x$$ from the A.M. of observations and we denote it by sigma $$ \displaystyle \left ( \sigma \right ) $$ if  $$ \displaystyle x/f_{i}\left ( i = 1,2,3,...,n \right ) $$ is a frequency distribution, then

    $$ \displaystyle \sigma =\sqrt{\frac{1}{N}\sum f_{i}\left ( x_{i}-\bar{x} \right )^{2}} $$           ........(i)

    where $$ \displaystyle \bar{x} $$ is the A.M.of the distribution & $$ \displaystyle N=\sum_{i=1}^{n}f_{i} $$

    The square of the standard deviation is called the variance & given by

    $$ \displaystyle \sigma ^{2}=\frac{1}{N}\sum_{i=1}^{n}f_{i}\left ( x_{i}-\bar{x} \right )^{2} $$     ........(ii)

    The calculation of coefficient of dispersion & coefficient of variation are count down by $$ \displaystyle \frac{\sigma }{\bar{x}} $$ & $$ \displaystyle \frac{\sigma }{\bar{x}}\times 100 $$ respectively.

    If deviation of $$x$$ are measured from an assumed mean $$A$$ then root mean square deviation of $$x$$ is denoted by $$S$$ and given by

    $$ \displaystyle S= \sqrt{\frac{1}{N}\sum_{i=1}^{n}f_{i}\left ( x_{i} -A\right )^{2}} $$ 

    which set up the relationship between S.D. and Root mean square deviation given by $$ \displaystyle S^{2}=\sigma ^{2}+d^{2}\left ( Where, d=\sum_{i=1}^{n} x_i-A \right ) $$

    Consider the frequency distribution

    Size46810121416
    Frequency1235321

    On the basis of above information answer the following questions.

    ...view full instructions

    The coefficient of dispersion for the given distribution is
    Solution
    First of all find the mean of the given frequency distribution after getting mean, then find deviation for each size.
    $$\begin{matrix}
    size\left

    ( x \right ) & frequency\left ( f \right ) & f(x) &

    Deviation   x=X-\bar{x}\left ( say\:\bar{x}=10 \right ) & x^{2} &

    fx^{2}\\
    4 & 1 & 4 & -6 & 36 & 36\\
    6 & 2 & 12 & -4 & 16 & 32\\
    8 & 3 & 24 & -2 & 4 & 12\\
    10 & 5 & 50 & 0 & 00 & 0\\
    12 & 3 & 36 & +2 & 4 & 12\\
    14 & 2 & 28 & +4 & 16 & 32\\
    16 & 1 & 16 & +6 & 36 & 36\\
     & \sum f=N=17 & \sum f\left ( x \right )=170 &  &  & \sum f(x^{2})=160
    \end{matrix}$$

    $$\therefore $$   $$\displaystyle \bar{x}=\frac{170}{17}=10$$
    Hence coefficient of dispersion (variation) $$\displaystyle =\frac{\sigma }{\bar{X}}\times 100=0.306$$

  • Question 3
    1 / -0
    Standard deviation for first 10  natural numbers is
    Solution
    Standard deviation of first $$n$$ natural number is $$\displaystyle =\sqrt{\frac{n^2-1}{12}}=\sqrt{\frac{10^2-1}{12}}=2.87$$  
  • Question 4
    1 / -0

    Directions For Questions

    The standard deviation of variate $$x$$ is the square root of the A.M. of the squares of all deviations of $$x$$ from the A.M. of observations and we denote it by sigma $$ \displaystyle \left ( \sigma \right ) $$ if  $$ \displaystyle x/f_{i}\left ( i = 1,2,3,...,n \right ) $$ is a frequency distribution, then

    $$ \displaystyle \sigma =\sqrt{\frac{1}{N}\sum f_{i}\left ( x_{i}-\bar{x} \right )^{2}} $$           ........(i)

    where $$ \displaystyle \bar{x} $$ is the A.M.of the distribution & $$ \displaystyle N=\sum_{i=1}^{n}f_{i} $$

    The square of the standard deviation is called the variance & given by

    $$ \displaystyle \sigma ^{2}=\frac{1}{N}\sum_{i=1}^{n}f_{i}\left ( x_{i}-\bar{x} \right )^{2} $$     ........(ii)

    The calculation of coefficient of dispersion & coefficient of variation are count down by $$ \displaystyle \frac{\sigma }{\bar{x}} $$ & $$ \displaystyle \frac{\sigma }{\bar{x}}\times 100 $$ respectively.

    If deviation of $$x$$ are measured from an assumed mean $$A$$ then root mean square deviation of $$x$$ is denoted by $$S$$ and given by

    $$ \displaystyle S= \sqrt{\frac{1}{N}\sum_{i=1}^{n}f_{i}\left ( x_{i} -A\right )^{2}} $$ 

    which set up the relationship between S.D. and Root mean square deviation given by $$ \displaystyle S^{2}=\sigma ^{2}+d^{2}\left ( Where, d=\sum_{i=1}^{n} x_i-A \right ) $$

    Consider the frequency distribution

    Size46810121416
    Frequency1235321

    On the basis of above information answer the following questions.

    ...view full instructions

    The coefficient of variation for the given distribution is
    Solution
    Lett $$A=10$$ 
    $$Size$$
    $$x_i$$ 
    $$Frequency$$
    $$f_i$$ 
    $$f_ix_i$$ $$(x_i-A)^2$$ $$f_i(x_i-A)^2$$ 
    $$4$$ $$1$$ $$4$$ $$36$$ $$36$$ 
    $$6$$ $$2$$ $$12$$ $$16$$$$32$$ 
    $$8$$ $$3$$ $$24$$ $$4$$ $$12$$ 
    $$10$$ $$5$$ $$50$$ $$0$$$$0$$ 
    $$12$$ $$3$$ $$36$$ $$4$$$$12$$ 
    $$14$$ $$2$$ $$28$$ $$16$$ $$32$$ 
    $$16$$ $$1$$ $$16$$ $$36$$ $$16$$ 
     $$\sum f_i=17$$ $$\sum f_ix_i=170$$  $$\sum f_i(x_i-A)^2=140$$ 
    $$\Rightarrow$$  $$\overline{x}=\dfrac{\sum f_ix_i}{\sum f_i}=\dfrac{170}{17}=10$$
    Now, $$S.D (\sigma)=\sqrt{\dfrac{\sum f_i(x_i-A)^2}{\sum f_i}}$$

                            $$=\sqrt{\dfrac{140}{17}}$$
                            $$=2.86$$
    $$\Rightarrow$$  Coefficient of variation $$=\dfrac{\sigma}{\overline{x}}\times 100$$
                                                       
                                                 $$=\dfrac{2.86}{10}\times 100$$
                                                 $$=28.6$$

  • Question 5
    1 / -0
    Standard deviation for first 10 even natural numbers is
    Solution
    We know standard deviation of first $$n$$ even natural number is $$, \sigma =\sqrt{\cfrac{n^2-1}{3}}$$
    Here $$n =10$$
    $$\therefore \sigma = \sqrt{\cfrac{100-1}{3}}=\sqrt{33}=5.74$$
  • Question 6
    1 / -0
    If the coefficient of variation of some observation is 60 and their standard deviation is 20, then their mean is

    Solution
    We know coefficient of variation C. V. $$\displaystyle =\frac{\sigma _{x}}{\bar{x}}\times 100$$
    $$\therefore $$   $$\displaystyle 60=\frac{20}{\bar{x}}\times 100$$   $$\therefore $$   $$\bar{x}=33.33$$(nearly)


  • Question 7
    1 / -0
    The coefficients of variation of two series are $$58$$% and $$69$$%. If their standard deviations are $$21.2$$ and $$15.6$$, then their A.M's are 
    Solution
    We know that $$\displaystyle C.V.=\frac { \sigma \times 100 }{ \overline { x }  } \Rightarrow \overline { x } =\frac { \sigma  }{ C.V. } \times 100$$
    $$\therefore$$ Mean of first series $$\displaystyle =\frac { 21.2\times 100 }{ 58 } =36.6$$
    Mean of second series $$\displaystyle =\frac { 15.6\times 100 }{ 69 } =22.6$$
  • Question 8
    1 / -0
    The Coefficient of Variation is given by:
    Solution
    The coefficient of variation (CV) is a standardized measure of dispersion 
    . It is defined as the ratio of the standard deviation to the mean.
    $$CV\quad =\quad \cfrac { \sigma  }{ Mean }\times100 $$
  • Question 9
    1 / -0
    The variance of the data:
    x:
    $$1$$
    $$a$$
    $${ a  }^{ 2 }$$
    ......
    $${ a }^{ n }$$
    f:
    $${ _{  }^{ n }{ C } }_{ 0 }$$
    $${ _{  }^{ n }{ C } }_{ 1 }$$
    $${ _{  }^{ n }{ C } }_{ 2 }$$
    ......
    $${ _{  }^{ n }{ C } }_{ n }$$
    is
    Solution
    $$ \displaystyle \bar { X } =\frac { \sum { { f }_{ i }{ x }_{ i } }  }{ \sum { { f }_{ i } }  } \\ \displaystyle =\frac { ^{ n }C_{ 0 }+a.^{ n }C_{ 1 }+{ a }^{ 2 }.^{ n }C_{ 2 }+....{ a }^{ n }.^{ n }C_{ n } }{ ^{ n }C_{ 0 }+^{ n }C_{ 1 }+^{ n }C_{ 2 }+....^{ n }C_{ n } } \\ \displaystyle =\frac { { \left( 1+a \right)  }^{ n } }{ { 2 }^{ n } } $$
    .
    $$ \displaystyle S.D.=\sqrt { \frac { \sum { { f }_{ i }{ { x }_{ i } }^{ 2 } }  }{ \sum { { f }_{ i } }  } -{ \left( \frac { \sum { { f }_{ i }{ x }_{ i } }  }{ \sum { { f }_{ i } }  }  \right)  }^{ 2 } } \\ \displaystyle =\sqrt { \frac { ^{ n }C_{ 0 }+{ a }^{ 2 }.^{ n }C_{ 1 }+{ a }^{ 4 }.^{ n }C_{ 2 }+....{ a }^{ 2n }.^{ n }C_{ n } }{ ^{ n }C_{ 0 }+^{ n }C_{ 1 }+^{ n }C_{ 2 }+....^{ n }C_{ n } } -{ \left[ \frac { { \left( 1+a \right)  }^{ n } }{ { 2 }^{ n } }  \right]  }^{ 2 } } \\ \displaystyle \sqrt { \frac { { \left( 1+{ a }^{ 2 } \right)  }^{ n } }{ { 2 }^{ n } } -{ \left( \frac { 1+a }{ 2 }  \right)  }^{ 2n } } $$

    $$Variance = (S.D)^2$$
  • Question 10
    1 / -0
    In a final examination in Statistics the mean marks of a group of $$150$$ students were $$78$$ and the S.D was $$8.0$$. In Economics, however, the mean marks were $$73$$ and the S.S was $$7.6$$. The variability in the two subjects respectively is
    Solution
    Coefficient of variance $$=\dfrac{\sigma}{\bar{x}} \times 100$$

    For Statistics, $$\sigma =8, \bar x=78$$
    So, coefficient of variation $$ =\dfrac{8}{78} \times 100=10.3$$%

    For economics, $$\sigma =7.6, \bar x=73$$
    So, coefficient of variation $$ =\dfrac{7.6}{73} \times 100=10.4$$%
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now