Self Studies

Measures of Dispersion Test - 20

Result Self Studies

Measures of Dispersion Test - 20
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The mean of a finite set X of numbers is $$14$$, the median of this set of numbers is $$12$$, and the standard deviation is $$1.8$$. A new set Y is formed by multiplying each member of the set S by $$3$$. Determine the correct statements w.r.t. set Y:
    I. The mean of the numbers is set Y is $$42$$
    II. The median of the numbers in set Y is $$36$$
    III. The standard deviation of the numbers is set Y is $$5.4$$
    Solution
    For set $$x$$
    Mean $$=14$$
    Median$$=12$$       
    S.D.$$=\sqrt { \sigma  } $$
            $$=1.8$$.

    For set $$y$$
    Mean $$=14\times 3= 42$$.
    Median $$=12\times 3=36$$.
    SD$$=1.8\times 3= 5.4$$.

    Hence all three are correct. 
  • Question 2
    1 / -0
    Find the mean for the following data using step deviation method.

    Solution
    Answer:- By shortcut Method
    Class interval width (i)= 24-12 = 12

    F$$d=\cfrac{x-A}{i} $$Fd 
    12=A100
    24212
    36326
    484312
    605420
     $$\Sigma f = 15$$  $$\Sigma fd = 40$$ 
    Mean = $$A+\cfrac{\Sigma fd}{\Sigma f} \times i=12+\left(\cfrac{40}{15} \times 12\right)={12+32}=44$$
    B)44
  • Question 3
    1 / -0
    Which of the following can be used as measures of dispersions?
    Solution
    Following terms used as measures of dispersion are:-

    a) Range
    b) Percentile
    c) Standard eviation
    d) Mean deviation.
  • Question 4
    1 / -0

    Directions For Questions

    Refer to the data given in the table below:
    $$X:$$$$3$$$$5$$$$12$$$$3$$$$2$$

    ...view full instructions

    Find the coefficient of variation.
    Solution
    $$ \quad X\\ \quad 03\\ \quad 05\\ \quad 12\\ \quad 03\\ \quad 02\\ \_ \_ \_ \_ \_ \\ \quad 25$$           $$x-\overline { x } \\ -2\\ \quad 00\\ \quad 07\\ -2\\ -3 $$               $${ \quad \quad (x-\overline { x } ) }^{ 2 }\\ \quad \quad \quad 04\\ \quad \quad \quad 00\\ \quad \quad \quad 49\\ \quad \quad \quad 04\\ \quad \quad \quad 09\\ \_ \_ \_ \_ \_ \_ \_ \_ \_ \_ \_ \_ \\ \sum { { (x-\overline { x } ) }^{ 2 }=66 } $$

    Variance $$= \cfrac { \sum { { (x-\overline { x } ) }^{ 2 } }  }{ n-1 } \\ =\cfrac { 66 }{ 4 } \\ =16.5$$.

    $$\sigma =S.D.=\sqrt { 16.5 } $$.
    Coefficient of variation $$= \cfrac { \sigma  }{ x } \\ =\cfrac { \sqrt { 16.5 }  }{ 5 } \\ =0.8124$$.

    % of coefficient of variation $$= 0.8124*100\\ =81.24$$.
  • Question 5
    1 / -0
    The mean of a distribution is $$14$$ and standard deviation is $$5$$. What is the value of the coefficient of variation?
    Solution
    Coefficient of variation is given by $$CV = \dfrac{SD}{Mean}\times 100 $$
    $$\Rightarrow \dfrac{5}{14}\times 100 = 35.7\%$$
  • Question 6
    1 / -0
    Find the mean for the following data using step deviation method.

    Solution
    Answer:- By shortcut Method
    Class interval width (i) = $$5-0 = 5$$

    C. I.
    mid point 
    $$d=\cfrac{X-A}{i}$$ Fd 
    0-5 2.5 -1 -4 
    5-10 7.5=A  8
    10-15 12.5  1212 
    15-20 17.5 16 32 
    20-25 22.5 20 60 
      $$\Sigma F = 60$$  $$\Sigma Fd=100$$ 
    Mean = $$A+\cfrac{\Sigma fd}{\Sigma f} \times i=7.5+\left(\cfrac{100}{60} \times 5\right)={7.5+8.33}=15.83$$
    A) $$15.83$$
  • Question 7
    1 / -0
    A random variable $$X$$ has the probability distribution given below. Its variance is 
    X12345
    P(X=x)k2k3k2kk
    Solution
    We know that
    $$\sum P(x) = 1$$
    $$k+2k+3k+2k+k=1$$
    $$9k=1$$
    $$k=\frac{1}{9}$$
    Now, var $$\sigma^2 = \sum xi^2P(xi)-(\sum\,xiP(xi))^2$$
    $$=1(k)+2^2(2k)+3^2(3k)+4^2(2k)+5^2(k)-[1(k)+2(2k)+3(3k)+4(2k)+5(k)]^2$$
    $$=93k-(27k)^2$$
    $$=93(\cfrac{1}{9})-[27(\frac{1}{9})]^2$$
    $$=\cfrac{31}{3}-3^2$$
    $$=\cfrac{31-27}{3}$$
    $$=\cfrac{4}{3}$$
  • Question 8
    1 / -0
    If the standard deviation of a set of scores is $$1.2$$ and their mean is $$10$$, then the coefficient of variation of the scores is
    Solution
    Given : standard deviation$$(\sigma)=1.2,$$ mean$$(\overline {X})=10$$.
    Coefficient of variation(C.V.) $$=\dfrac{\sigma}{\overline {X}}\times 100=\dfrac{1.2}{10}\times 100=12$$
    $$\therefore$$ C.V. $$=12$$
    Hence, option $$A$$ is correct.
  • Question 9
    1 / -0
    Standard Deviation of n observations $$a_1, a_2, a_3 .....a_n$$ is $$\sigma$$ Then the standard deviation of the observations $$\lambda a_1, \lambda a_2, ..., \lambda a_n$$ is
    Solution
    Let the mean of original data is $$\mu$$
    Then mean of observation if all the terms are multiplied by the constant $$\lambda$$ will be $$\lambda \mu$$
    If $$\sigma$$ be the standard deviation of original observation , then
    $$\sigma=\sqrt{\dfrac{1}{n}\displaystyle \sum_{i=1}^n (x_i-\mu)^2 }$$
    Now let the standard deviation of new observation is $$\sigma'$$, then
    $$\sigma'=\sqrt{\dfrac{1}{n}\displaystyle \sum_{i=1}^n (\lambda x_i-\lambda\mu)^2 }$$
    $$=\sqrt{\dfrac{1}{n}\displaystyle \sum_{i=1}^n \lambda^2( x_i-\mu)^2 }$$
    $$=|\lambda|\sqrt{\dfrac{1}{n}\displaystyle \sum_{i=1}^n( x_i-\mu)^2 }=|\lambda |\sigma$$
    Note that: standard deviation can never be negative 
  • Question 10
    1 / -0
    Which one of the following is a measure of dispersion?
    Solution
    Dispersion is the extent to which the distribution is stretched or squeezed.
    The most common measures of dispersion are variance, standard deviation, mean deviation, range etc.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now