Self Studies

Measures of Dispersion Test - 21

Result Self Studies

Measures of Dispersion Test - 21
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Find the variance of the following distribution.
    Class interval
    $$20-24$$
    $$25-29$$
    $$30-34$$
    $$35-39$$
    $$40-44$$
    $$45-49$$
    Frequency
    $$15$$
    $$25$$
    $$28$$
    $$12$$
    $$12$$
    $$8$$
    Solution
    $$Class$$ $$Mid-point$$
    $$(x)$$ 
    $$Frequency$$
    $$(f)$$ 
    $$xf$$ $$(x-\overline{x})$$ $$(x-\overline{x})^2$$ $$(x-\overline{x})^2f$$ 
    $$20-24$$ $$22$$ $$15$$ $$330$$ $$-10.25$$ $$105.0625$$ $$1575.9375$$ 
    $$25-29$$ $$27$$ $$25$$ $$675$$ $$-5.25$$ $$27.5625$$ $$689.0625$$ 
    $$30-34$$ $$32$$ $$28$$ $$896$$ $$-0.25$$ $$0.0625$$ $$1.75$$ 
    $$35-39$$ $$37$$ $$12$$ $$444$$ $$4.75$$ $$22.5625$$ $$270.75$$ 
    $$40-44$$ $$42$$ $$12$$ $$504$$ $$9.75$$ $$95.0625$$ $$1140.75$$ 
    $$45-49$$ $$47$$ $$8$$ $$376$$ $$14.75$$ $$217.5625$$ $$1740.5$$ 
      $$\sum f=100$$ $$\sum xf=3225$$   $$\sum(x-\overline{x})^2f=5418.75$$  
    $$\Rightarrow$$  $$Mean(\overline{x})=\dfrac{\sum xf}{\sum f}=\dfrac{3225}{100}=32.25$$
    $$\Rightarrow$$  $$Variance(\sigma^2)=\dfrac{\sum(x-\overline{x})^2f}{\sum f}=\dfrac{5418.75}{100}=54.18$$
  • Question 2
    1 / -0
    If the mean of the numbers $$a,b,8,5,10$$ is $$6$$ and their variance is $$68$$, then $$ab$$ is equal to
    Solution
    Given,
    $$\cfrac { a+b+8+5+10 }{ 5 } =6$$
    $$\Rightarrow a+b+c+23=30$$
    $$\Rightarrow a+b=7....(i)$$
    and $$\quad \cfrac { \sum { { \left( { x }_{ 1 }-\overline { x }  \right)  }^{ 2 } }  }{ n } ={ \sigma  }^{ 2 }\quad $$
    $$\cfrac { { (a-6) }^{ 2 }+{ (b-6) }^{ 2 }+4+1+16 }{ 5 } =\cfrac { 34 }{ 5 } \quad $$
    $$\Rightarrow { (a-6) }^{ 2 }+{ (b-6) }^{ 2 }+21=34\quad $$
    $$\Rightarrow { a }^{ 2 }+{ b }^{ 2 }-84+93=34\quad \left[ \because a+b=7 \right] $$
    $$\quad \Rightarrow { a }^{ 2 }+{ b }^{ 2 }=25...(i)\quad $$
    From Eq.(i)
    $$\Rightarrow { (a+b) }^{ 2 }={ 7 }^{ 2 }$$
    $$\Rightarrow { a }^{ 2 }+{ b }^{ 2 }+2ab=49$$
    $$\Rightarrow 25+2ab=49$$ (From Eq.(ii))
    $$\Rightarrow 2ab=24\Rightarrow ab=12\quad $$
  • Question 3
    1 / -0
    If the median of the data 6,7,x-2,x,18,21 written in ascending order is 16, then the variance of that data is 
    Solution
    $$M=\dfrac{x-2+x}{2}=16$$

    Variance = $$\dfrac{1}{n}\sum (x_i-\overline{x})^{2}$$
    Required variance=$$31\dfrac{1}{3}$$
  • Question 4
    1 / -0
    If $$n=10, \bar{x}=12$$ and $$\sum x^2=1530$$, then calculate the coefficient of variation.
    Solution
    $$\sigma=\sqrt{\dfrac{\sum x^2}{n}-\left(\dfrac{\sum x}{n}\right)^2}$$
       
       $$=\sqrt{\dfrac{1530}{10}-(12)^2}$$

       $$=\sqrt{153-144}$$
       $$=\sqrt{9}$$
       $$=3$$

    Coefficient of variation $$=\dfrac{\sigma}{\overline{x}}\times 100$$

                                           $$=\dfrac{3}{12}\times 100$$

                                           $$=\dfrac{1}{4}\times 100$$
                                           $$=25$$
  • Question 5
    1 / -0
    Calculate the standard deviation of the following data.
    x
    $$3$$
    $$8$$
    $$13$$
    $$18$$
    $$23$$
    f
    $$7$$
    $$10$$
    $$15$$
    $$10$$
    $$8$$
    Solution
    $$x$$ $$f$$ $$xf$$ $$(x-\overline{x})$$ $$(x-\overline{x})^2$$ $$(x-\overline{x})^2f$$  
    $$3$$ $$7$$ $$21$$ $$-10.2$$ $$104.04$$ $$728.28$$ 
    $$8$$ $$10$$ $$80$$ $$-5.2$$$$27.04$$ $$270.4$$ 
    $$13$$ $$15$$ $$195$$ $$-0.2$$ $$0.04$$ $$0.6$$ 
    $$18$$ $$10$$ $$180$$ $$4.8$$ $$23.04$$ $$230.4$$ 
    $$23$$ $$8$$ $$184$$ $$9.8$$ $$96.04$$ $$768.32$$ 
     $$\sum f=50$$ $$\sum xf=660$$   $$\sum(x-\overline{x})^2=1998$$ 
    $$\Rightarrow$$  $$\overline{x}=\dfrac{\sum xf}{\sum f}=\dfrac{660}{50}=13.2$$
    Now, calculate standard deviation :
    $$S=\sqrt{\dfrac{(x-\overline{x})^2}{\sum f}}=\sqrt{\dfrac{1998}{50}}=\sqrt{39.96}=6.32$$
  • Question 6
    1 / -0
    Calculate the standard deviation of the following data.
    $$10, 20, 15, 8, 3, 4$$
    Solution
    $$\Rightarrow$$  The given numbers  are $$3,4,8,10,15,20$$.
    $$\Rightarrow$$  $$\overline{X}=\dfrac{3+4+8+10+15+20}{6}=10$$

     $$X$$$$X-\overline{X}$$ $$(X-\overline{X})^2$$ 
    $$3$$ $$-7$$ $$49$$ 
    $$4$$ $$-6$$ $$36$$ 
    $$8$$ $$-2$$ $$4$$ 
    $$10$$ $$0$$ $$0$$ 
    $$15$$ $$5$$ $$25$$ 
    $$20$$ $$10$$ $$100$$ 
      $$\sum (X-\overline{X})^2=214$$ 
    $$\Rightarrow$$  $$S=\sqrt{\dfrac{(X-\overline{X})^2}{N}}$$
             $$=\sqrt{\dfrac{214}{6}}$$
             $$=\sqrt{35.66}$$
             $$=5.97$$

  • Question 7
    1 / -0
    Let X denote the number of scores which exceed 4 in 1 toss of a symmetrical die. Consider the following statements :
    1. The arithmetic mean of X is 6.
    2. The standard deviation of X is 2.
    Which of the above statements is/are correct ?
    Solution
    The only possible favorable outcomes are $$5$$ and $$6$$. Hence, the arithmetic mean of $$X$$ is 5.5.
    The standard deviation of $$X=\dfrac{1}{2}((6-5.5)^2+(5-55)^2)=0.25$$
  • Question 8
    1 / -0
    The arithmetic mean of the observations 10,8,5,a,b is 6 and their variance 6.8. Then ab=
    Solution
    $$\dfrac{10+8+5+a+b}{5}=6,$$

    $$\dfrac{1}{n}\sum \left ( x_i-\overline{x} \right )^{2}=6.8$$
    solving above two equations we get values of a and b.
  • Question 9
    1 / -0

    Directions For Questions

    As median divides an arranged sense into two equal parts, in similar way quartile divides an arranged series in $$4$$ equal part. For ungrouped frequency distribution formula of finding $$i^{th}$$ quartile $$=Q_i=\left\{i\cdot \left(\displaystyle\frac{N+1}{4}\right)\right\}^{th}$$ term, $$i=1, 2, 3$$.
    Quartile deviation: half of difference between upper quartile & lower quartile.
    $$\Rightarrow$$ Quartile deviation(Q.D.)$$=\displaystyle\frac{1}{2}(Q_3-Q_1)$$
    $$\Rightarrow$$ Coefficient of quartile $$=\displaystyle\frac{Q_3-Q_1}{Q_3+Q_1}$$.

    ...view full instructions

    Coefficient of quartile deviation of numbers $$6, 8, 9, 10, 11, 12, 14$$ is?
    Solution
    Arranging given numbers in ascending order,
    $$6,8,9,10,11,12,14$$
    Number of observation $$(N)=7$$
    $$Q_i=\left\{i\left(\dfrac{N+1}{4}\right)\right\}^{th}term$$

    $$Q_1=\left\{1.\left(\dfrac{7+1}{4}\right)\right\}^{th}term=2^{nd}term$$
    $$2^{nd}term=8$$
    $$\therefore$$  $$Q_1=8$$

    $$Q_3=\left\{3.\left(\dfrac{7+1}{4}\right)\right\}^{th}term=6^{th}term$$
    $$6^{th}term=12$$
    $$\therefore$$  $$Q_3=12$$

    $$\Rightarrow$$  Coefficient of quartile $$=\dfrac{Q_3-Q_1}{Q_3+Q_1}$$

                                               $$=\dfrac{12-8}{12+8}$$

                                               $$=\dfrac{4}{20}$$

                                               $$=\dfrac{1}{5}$$
  • Question 10
    1 / -0
    Which of the following are measures of dispersion?
    Solution
    Standard Deviation, Variance, and Range are measures of dispersion but the Mean, Mode, and Median are the measure of central tendency.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now