Self Studies

Measures of Dispersion Test - 36

Result Self Studies

Measures of Dispersion Test - 36
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Consider the following statements:
    (1) Mean is independent of change in scale and change in origin
    (2) Variance is independent of change in scale but not in origin
    Which of the above statements is/are correct?
    Solution
    Mean changes with changes in origin as if $$x$$ is added to all the value, $$nx$$ is added to total value and then, divided by $$n$$ to get an addition of $$x$$. 
    Variance is independent to the choice of origin as variance is $$(a-\overline{a})^2$$ which negates the addition in observation value and the mean as shown above.
    Hence, answer is neither 1 nor 2.
  • Question 2
    1 / -0
    The classes in which the lower limit or the upper limit is not specified are known as: _________.
  • Question 3
    1 / -0
    Laspeyres Price Index =?

    Solution
    Laspeyres Price Index Number 
    $$P^{L}_{01} =\dfrac{\Sigma P_{1}Q_{0}}{\Sigma P_{0}Q_{0}} \times {100} = \dfrac{23}{15}\times{100} = 153.33$$.
  • Question 4
    1 / -0
    Laspeyres Price Index Number = ? 

    Solution
    Laspeyres Price Index Number 
    $$P^{l}_{01} =\dfrac{\Sigma P_{1}Q_{0}}{\Sigma P_{0}Q_{0}} \times {100} = \dfrac{404}{182}\times{100} = 221.98$$
  • Question 5
    1 / -0
    Given the following set of data, what is the range 12 23 34 54 21 8 9 67:
    Solution

    Range is defined as the difference between the highest(or largest ) and lowest(or smallest) observed value in a series. It is the most simple and commonly understandable measures of dispersion. Therefore, it is the most affected measures of dispersion by the extreme values of the series. 

    Range = H - L 

    In the given series, H= 67 and L= 12 

    Range = 67 -12 = 55 .

  • Question 6
    1 / -0
    Co-efficient of variation is?
    Solution

    Coefficient of variation is the coefficient of dispersion based on the standard deviation of the statistical series.

    Therefore, Coefficient of variation is a unit less or relative measure of dispersion as variation is the absolute measure of dispersion. 

  • Question 7
    1 / -0
    The sum of squares of deviations for $$10$$ observations taken from mean $$50$$ is $$250 $$. Then Co-efficient of variation is
    Solution
    $$\sum(x-\overline{x})^2=250$$, $$\overline{x}=50$$
    $$\Rightarrow$$  Standard deviation $$(\sigma)=\sqrt{\dfrac{250}{10}}=\sqrt{25}=5$$
    $$\Rightarrow$$  Coefficient of variation $$=\sqrt{\dfrac{\sum(x-\overline{x})^2}{n}}$$
                                                 $$=\dfrac{\sigma}{Mean}\times 100$$

                                                 $$=\dfrac{5}{50}\times 100$$

                                                 $$=10\%$$
  • Question 8
    1 / -0
    The mean deviation about the mean of the set of first $$n$$ natural numbers when $$n$$ is an odd number.
    Solution
    $$\overline { X } =\cfrac { \sum _{ i=1 }^{ n }{ i }  }{ n } =\cfrac { n(n+1) }{ 2n } =\cfrac { n+1 }{ 2 } $$
    $$\left| { d }_{ i } \right| =\left| r-\left( \cfrac { n+1 }{ 2 }  \right)  \right| $$$
    $$\sum { \left| { d }_{ i } \right|  } =\sum _{ r=1 }^{ n }{ \left| r-\left( \cfrac { n+1 }{ 2 }  \right)  \right|  } =\sum _{ r=1 }^{ \cfrac { n+1 }{ 2 }  }{ \cfrac { n+1 }{ 2 }  } =r+\sum _{ r=\cfrac { n+1 }{ 2 }  }^{ n }{ r-\left( \cfrac { n+1 }{ 2 }  \right)  } $$
    $$\Rightarrow \sum { = } \left( \cfrac { n+1 }{ 2 }  \right) \left( \cfrac { n+1 }{ 2 }  \right) -\cfrac { 1 }{ 2 } \left( \cfrac { n+1 }{ 2 }  \right) \left( \cfrac { n+3 }{ 2 }  \right) -\left( \cfrac { n+1 }{ 2 }  \right) \left( \cfrac { n+1 }{ 2 }  \right) +\cfrac { n+1 }{ 4 } \left( \cfrac { n+1 }{ 2 } +n \right) \quad $$
    $$\Rightarrow \cfrac { n+1 }{ 4 } \left( \cfrac { 3n+1 }{ 2 }  \right) -\cfrac { \left( n+1 \right) \left( n+3 \right)  }{ 8 } \Rightarrow \cfrac { n+1 }{ 4 } \left( \cfrac { 3n+1 }{ 2 } -\cfrac { n+3 }{ 2 }  \right) $$
    $$\cfrac { n+1 }{ 4 } \left( \cfrac { 2n-2 }{ 2 }  \right) =\cfrac { { n }^{ 2 }-1 }{ 4 } $$
  • Question 9
    1 / -0
    Find variance of the following data.
    Class intervalFrequency
    $$4-8$$$$3$$
    $$8-12$$$$6$$
    $$12-16$$$$4$$
    $$16-20$$$$7$$
    Solution
    $$C.I$$ $$x_i$$ $$f_i$$ $$f_ix_i$$ $$(x_i-\overline{x})^2$$ $$f_i(x_i-\overline{x})^2$$ 
    $$4-8$$ $$6$$ $$3$$ $$18$$ $$49$$ $$147$$ 
    $$8-12$$ $$10$$ $$6$$ $$60$$ $$9$$ $$54$$ 
    $$12-16$$ $$14$$ $$4$$ $$56$$ $$1$$ $$4$$ 
    $$16-20$$ $$18$$ $$7$$ $$126$$ $$25$$ $$175$$ 
      $$\sum f_i=20$$ $$\sum f_ix_i=260$$ $$\sum(x_i-\overline{x})^2=84$$  $$\sum f_i(x_i-\overline{x})^2=380$$ 
    $$\Rightarrow$$  $$\overline{x}=\dfrac{\sum f_ix_i}{\sum f_i}=\dfrac{260}{20}=13$$
    $$\Rightarrow$$  $$Variance(\sigma^2)\dfrac{\sum f_i(x_i-\overline{x})^2}{\sum f_i}=\dfrac{380}{20}=19$$
  • Question 10
    1 / -0
    If the sum and sum of squares of $$10$$ observations are $$12$$ and $$18$$ resp., then, The $$S.D$$ of observations is :-
    Solution
    $$\sum x=12,\sum x^2=18,N=10$$
    $$SD=\sqrt{\cfrac{\sum x^2}{N}-(\cfrac{\sum x}{N})^2}$$
    $$\implies SD=\sqrt{\cfrac{18}{10}-(\cfrac{12}{10})^2}=\cfrac{3}{5}$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now