Self Studies

Measures of Dispersion Test - 37

Result Self Studies

Measures of Dispersion Test - 37
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Standard deviation of four observations $$-1, 0, 1$$ and k is $$\sqrt{5}$$ then k will be?
    Solution
    $$\sigma^2=\dfrac{\displaystyle\sum x^2_i}{n}-\left(\dfrac{\displaystyle\sum x_i}{n}\right)^2$$
    $$\Rightarrow 5=\dfrac{1+0+1+k^2}{4}-\left(\dfrac{-1+0+1+k}{4}\right)^2$$
    $$\Rightarrow 5=\dfrac{k^2+2}{4}=\dfrac{k^2}{16}$$
    $$\Rightarrow 80=4k^2+8-k^2$$
    $$\Rightarrow 72=3k^2$$
    $$\Rightarrow k=2\sqrt{6}$$.
  • Question 2
    1 / -0
    The standard deviation of the data $$6,5,9, 13, 12, 8, 10$$ is 
    Solution
    Given data $$6,5,9,13,12,8,10$$ Mean of the given data $$(\bar{x})$$
    $$=\dfrac{6+5+9+13+12+8+10}{7}$$
    $$=\dfrac{63}{7}=9$$
    The deviation of the respective data from the mean i.e. $$(x_i-\bar{x})$$ are
    $$6-9,5-9,9-9,13-9,12-9,8-9,10-9$$
    $$(x_i-\bar{x})=-3,-4,0,4,3,-1,1$$
    $$(x_1-\bar{x})^2=9,16,0,16,9,1,1$$
    $$\displaystyle \sum^7_{i=i} (x_1-\bar{x})^2=9+16+0+16+9+1+1=52$$
    $$\therefore$$ standard deviation $$(\sigma)$$
    $$\displaystyle =\sqrt{\dfrac{1}{n}\sum^7_{i=1} (x_1-\bar{x})^2}=\sqrt{\dfrac{52}{7}}$$
  • Question 3
    1 / -0
    If the mean deviation about the median of the numbers $$a,2a,....,50a$$ is $$50$$, then $$|a|$$ equals:-
    Solution
    Given series:- $$a, 2a, 3a, ....., 50a$$
    Median $$= \cfrac{25a + 26a}{2} = 25.5 a$$
    Mean deviation about median $$= 50 \quad \left( \text{Given} \right)$$
    Mean deviation $$= \cfrac{\sum_{i = 1}^{50}{\left| {x}_{i} - 25.5a \right|}}{50}$$
    $$\therefore \cfrac{24.5a + 23.5a + 22.5a + ..... + 23.5a + 24.5a}{50} = 50$$
    $$\Rightarrow a + 3a + 5a + ..... + 47a + 49a = 2500$$
    $$\Rightarrow \cfrac{25}{2} \left( 2a + \left( 25 - 1 \right) 2a \right) = 2500$$
    $$\Rightarrow 2a \times 25 = 200$$
    $$\Rightarrow a = \cfrac{200}{50} = 4$$
  • Question 4
    1 / -0
    Standard deviation of first $$n$$ odd natural numbers is
    Solution
    Stndard deviation, $$\sigma = \sqrt{\dfrac{\sum x_i^2}{N}-(\bar{x})^2}$$

    $$\therefore \bar{x} = \dfrac{\sum x_i}{N}$$

    $$= \dfrac{1 + 3 +5 + ...(2n-1)}{n}$$

    $$= \dfrac{\dfrac{n}{2}[1+2n-1]}{n}$$

    $$=\dfrac{n^2}{n} = n$$

    Again, $$\sum x_i^2 = 1^2 + 3^2 + 5^2 + ...(2n - 1)^2$$

    $$=\sum (2n-1)^2$$

    $$=\sum(4n^2 - 4n+1)$$

    $$= 4\sum n^2 - 4\sum n + \sum 1$$

    $$= \dfrac{4n(n+1)(2n+1)}{6} - \dfrac{4n(n+1)}{2}+n$$

    $$= n \left[ \dfrac{2}{3} (n + 1)(2n + 1) - 2(n+1)+1\right]$$

    $$= \dfrac{n}{3} [2(2n^2+3n+1) - 6(n+1) + 3]$$

    $$= \dfrac{n}{3} [ 4n^2 + 6n + 2 - 6n - 6 + 3]$$

    $$= \dfrac{n}{3} [4n^2 - 1]$$

    $$\therefore \delta = \sqrt{\dfrac{n(4n^2 - 1)}{3n} - n^2}$$

    $$= \sqrt{\dfrac{4n^2-1}{3}-n^2}$$

    $$= \sqrt{\dfrac{4n^2-1-3n^2}{3}}$$

    $$= \sqrt{\dfrac{n^2 - 1}{3}}$$
  • Question 5
    1 / -0
    For the observations $${ x }_{ 1, }{ x }_{ 2 },{ x }_{ 3 },........{ x }_{ 18, }$$ it is given that $$\sum _{i =1 }^{ 18 }{ ({ x }_{ i }-8)=9 } $$ and $$\sum _{  j=1}^{ 18 }{ { ({ x }_{ j}-8) }^{ 2 }=45 } $$ then the standard deviation of these eighteen observations is 
    Solution

  • Question 6
    1 / -0

    Directions For Questions

    The daily wages (in $$Rs$$) of $$11$$ persons given as $$140, 145, 130, 165, 160, 125, 150, 170, 175, 120, 180$$ then

    ...view full instructions

    the coefficient of quartile deviation is 
    Solution
    $$\begin{array}{l} 120,125,130,140,145,150,160,165,170,175,180 \\ n=11 \\ \Rightarrow { Q_{ 1 } }=\left( { \frac { { n+1 } }{ 4 }  } \right) th\, \, term=\left( { \frac { { 12 } }{ 4 }  } \right) th\, \, term=3th\, \, term \\ \Rightarrow { Q_{ 3 } }=130 \\ and \\ { Q_{ 3 } }=3\left( { \frac { { n+1 } }{ 4 }  } \right) th\, \, term\, =3\left( { \frac { { 12 } }{ 4 }  } \right) th\, \, term=9th\, \, term=170 \\ Then,\, \, coefficient\, \, of\, \, quartiledeviation\, \, =\frac { { \left( { { Q_{ 3 } }-{ Q_{ 1 } } } \right)  } }{ { \left( { { Q_{ 3 } }+{ Q_{ 1 } } } \right)  } } \times 100 \\ =100\times \frac { { \left( { 170-130 } \right)  } }{ { \left( { 170+130 } \right)  } } =\frac { { 40 } }{ { 300 } } \times 100=\frac { { 40 } }{ 3 } \, \,  \end{array}$$
  • Question 7
    1 / -0
    If $$ N = 10 \sum x = 120 $$ and $$ \sigma _{x} = 60 $$ , the variation coefficient is - 
    Solution
    Variation coefficient 
    $$= \dfrac{\sigma _{x}}{Mean} \times 100$$
    $$ = \dfrac{60 \times 10}{120} \times = 500$$
  • Question 8
    1 / -0
    Mean of variable series $$\bar{x} = 773$$ and mean deviation 64.4 , then coefficient of mean deviation is 
    Solution
    $$\dfrac{Mean deviation}{Mean} = \dfrac{64.4}{773} = 0.083 $$
    Thus (C) is correct 
  • Question 9
    1 / -0
    Which one of the following is a false description?
  • Question 10
    1 / -0
    Mean and standard deviation of a data are $$48$$ and $$12$$ respectively. The coefficient of variation is.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now