Self Studies

Measures of Dispersion Test - 8

Result Self Studies

Measures of Dispersion Test - 8
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    $$5$$ students of a class have an average height $$150\ cm$$ and variance $$18\ cm^{2}$$. A new student, whose height is $$156\ cm$$, joined them. The variance (in $$cm^{2})$$ of the height of these six students is
    Solution
    Given $$\bar {x} = \dfrac {\sum x_{i}}{5} = 150$$
    $$\Rightarrow \displaystyle \sum_{i = 1}^{5} x_{i} = 750 .... (i)$$
    $$\sigma^2=18$$
    $$\dfrac {\sum x_{i}^{2}}{5} - (\bar {x})^{2} = 18$$
    $$\dfrac {\sum x_{i}^{2}}{5} - (150)^{2} = 18$$
    $$\sum x_{i}^{2} = 112590 ..... (ii)$$
    Given height of new student
    $$x_{6} = 156$$
    Now, $$\bar {x}_{new} = \dfrac {\displaystyle \sum_{i = 1}^{5}x_{i}}{6} = \dfrac {750 + 156}{6} = 151$$
    Also, $$\sigma_{new}^2= \dfrac {\displaystyle \sum_{i = 1}^{5}x_{i}^{2}}{6} - (\overline {x}_{new})^{2}$$
    $$= \dfrac {112590 + (156)^{2}}{6} - (151)^{2}$$
    $$= 22821 - 22801 = 20$$.
  • Question 2
    1 / -0
    A student scores the following marks in five test: $$45, 54, 41, 57, 43$$. His score is not known for the sixth test. If the mean score is 48 in the six tests, then the standard deviation of the marks in six test is 
    Solution
    Let $$x$$ be the $$6^{th}$$ observation
    $$\Rightarrow 45 + 54 + 41 + 57 + 43 + x = 48 \times 6 = 288$$
    $$\Rightarrow x = 48$$
    Variance $$= \left(\dfrac{\sum x_i^2}{6} - (\bar{X})^2\right)$$
    $$\Rightarrow$$ variance $$=\dfrac{14024}{6} - (48)^2$$
    $$=\dfrac{100}{3}$$
    $$\Rightarrow$$ standard deviation $$=\dfrac{10}{\sqrt{3}}$$
  • Question 3
    1 / -0
    If the data $$x_1, x_2, .., x_{10}$$ is such that the mean of first four of these is $$11$$, the mean of the remaining six is $$16$$ and the sum of square of all of these is $$2,000$$; then the standard deviation of this data is?
    Solution
    $$x_1+...+x_4=44$$
    $$x_5+.....+x_{10}=96$$
    $$\vec{x}=14, \displaystyle\sum x_i=140$$
    Variance $$=\dfrac{\displaystyle\sum x^2_i}{n}=\vec{x^2}=4$$
    Standard deviation $$=2$$.
  • Question 4
    1 / -0
    For two data sets, each of size $$ 5$$, the variances are given to be $$4$$ and $$5$$  and the corresponding means are given to be $$2$$ and $$4,$$ respectively. The variance of the combined data set is 
    Solution
    $$\sigma_{\mathrm{x}}^{2}=4$$
    $$\sigma_{\mathrm{y}}^{2}=5$$
    $$\overline{\mathrm{x}}=2$$
    $$\overline{\mathrm{y}}=4$$
    $$\displaystyle \frac{\Sigma \mathrm{x}_{\mathrm{i}}}{5}=2, \Sigma \mathrm{x}_{\mathrm{i}}=10;\Sigma \mathrm{y}_{\mathrm{i}}=20$$
    $$
    \sigma_{\mathrm{x}}^{2}=(\frac{1}{5}\Sigma \mathrm{x}_{\mathrm{i}}^{2})-(\overline{x})^{2}=\frac{1}{5}(\Sigma \mathrm{x}_{1}^{2})-4
    $$
    $$\sigma_{\mathrm{y}}^{2}=(\frac{1}{5}\Sigma \mathrm{y}_{\mathrm{i}}^{2})-(\overline{y})^{2}=\frac{1}{5}(\Sigma \mathrm{y}_{1}^{2})-4$$
    $$
    \Sigma \mathrm{x}_{\mathrm{i}}^{2}=40
    $$
    $$
    \Sigma \mathrm{y}_{\mathrm{i}}^{2}=105
    $$
    $$\sigma_{\mathrm{z}}^{2}=\displaystyle \frac{1}{10}(\Sigma \mathrm{x}_{\mathrm{i}}^{2}+\Sigma \mathrm{y}_{\mathrm{i}}^{2})-(\frac{\overline{\mathrm{x}}+\overline{\mathrm{y}}}{2})=\frac{1}{10}(40+105)-9=\frac{145-90}{10}=\frac{55}{10}=\frac{11}{2}$$
  • Question 5
    1 / -0
    The variance of first $$ 50$$ even natural numbers is
    Solution
    $${\textbf{Step-1: Use mean formula and find the mean.}}$$
                     $$\Rightarrow \sigma^2 = \dfrac{1}{n} \sum x_i^2 - \bar{(x)}^2$$
     
                     $$\Rightarrow n = 50, \sum x_i = 2 +4+6+8+...+100$$
                     $${\text{We know that,}}$$
                     $$\Rightarrow \bar {x} = \dfrac{\sum x_i}{n}$$

                     $$\Rightarrow \bar {x} = \dfrac{2 +4+6+8+...+100}{50}$$

                     $$\Rightarrow \bar {x} = \dfrac{50 \times 51}{50}$$ $$[\because \sum 2n = n(n+1)]$$

                     $$\Rightarrow \bar {x} = 51$$
    $${\textbf{Step-2: Put the values in variance formula.}}$$
                     $$\Rightarrow \sigma^2 = \dfrac{1}{n} \sum x_i^2 - \bar{(x)}^2$$
                     $$= \dfrac{1}{50} (2^2 +4^2+6^2+8^2+...+100^2) - {(51)}^2$$
                     $$= \dfrac{1}{50} [({2.1})^2 +({2.2})^2+({2.3})^2+({2.4})^2+...+({2.50})^2] - {(51)}^2$$
                     $$= \dfrac{1}{50} 2^2[({1})^2 +({2})^2+({3})^2+({4})^2+...+({50})^2] - {(51)}^2 ...(1)$$
                     $${\text{But,}}$$
                     $$\Rightarrow ({1})^2 +({2})^2+({3})^2+({4})^2+...+({n})^2 = \dfrac{n(n+1)(2n+1)}{6}$$
                     $$\Rightarrow ({1})^2 +({2})^2+({3})^2+({4})^2+...+({50})^2 = \dfrac{50(50+1)(2 \times 50+1)}{6}$$
                    $$\Rightarrow ({1})^2 +({2})^2+({3})^2+({4})^2+...+({50})^2 = \dfrac{50(51)(101)}{6}$$
                     $${\text{Equation (1) become,}}$$
                     $$= \dfrac{1}{50} 2^2[\dfrac{50(51)(101)}{6}] - {(51)}^2$$
                     $$= 34 \times 101 -2601$$
                     $$ = 3434-2601$$
                     $$=833$$
    $${\textbf{Thus, option B is correct.}}$$
  • Question 6
    1 / -0
    Find the Standard Deviation of of first $$10$$ multiples of $$3$$.
    Solution
    First $$10$$ multiples of $$3$$ are $$3,6,9...30$$.
    This is an A.P.
    $$sum=\dfrac n2 (a+l)= \dfrac {10}{2} \times (3+30)$$
    $$\therefore sum=165$$.
    Mean, $$u=\dfrac {sum}{n}=\dfrac{165}{10}$$.
    Variance, $$\sigma ^2=\dfrac{\sum(x_i ^2)}{n}-u^2$$.
    $$\therefore \sigma ^2=\dfrac{3^2+6^2+...30^2}{10}-{16.5}^2$$.
    $$\therefore \sigma ^2=\dfrac{3\times(1^2+2^2+...10^2}{10}-{16.5}^2$$.
    $$\therefore \sigma ^2=\dfrac{9\times 10\times (10+1)\times (2\times 10+1)}{6\times 10}-{16.5}^2$$.
    $$\therefore \sigma ^2=346.5-272.25$$
    $$\therefore \sigma ^2=74.25$$
    Standard Deviation, $$S.D=\sqrt{ \sigma ^2}$$
    $$\therefore S.D=\sqrt{74.25}$$
    Thus, $$S.D=8.61$$
    Ans-Option $$A$$.
  • Question 7
    1 / -0
    If the coefficient of variation and standard deviation of a distribution are 50% and 20 respectively, then its mean is
    Solution
    Given $$\sigma = 20$$, coefficient of variation $$=50$$ %
    We know coefficient of variation $$=\cfrac{\sigma }{\bar{x}}\times 100=50$$
    $$\Rightarrow \bar{x} = 2\times \sigma = 40$$
  • Question 8
    1 / -0
    The variance of first n natural numbers is
    Solution
    $$\Rightarrow$$  First $$n$$ natural numbers are $$1,2,3,4,....n$$
    $$\Rightarrow$$  $$Mean=\dfrac{1+2+3+4+....+n}{n}$$
                       $$=\dfrac{\dfrac{n(n+1)}{2}}{n}$$
                       $$=\dfrac{n+1}{2}$$
    $$\Rightarrow$$  $$Variance (\sigma)^2=\dfrac{\sum(x_i)^2}{n}-(mean)^2$$
                                     $$=\dfrac{(1)^2+(2)^2+....n^2}{n}-\left(\dfrac{n+1}{2}\right)^2$$
    Since, $$(1)^2+(2)^2+(3)^2+....+(n)^2=\dfrac{n(n+1)(2n+1)}{6}$$
    $$\therefore$$    $$Variance(\sigma)^2=\dfrac{n(n+1)(2n+1)}{6n}-\dfrac{(n+1)}{4}$$

                                     $$=\dfrac{(n+1)(2n+1)}{6}-\dfrac{(n+1)}{4}$$

                                     $$=\dfrac{(n+1)}{2}\left(\dfrac{2n+1}{3}-\dfrac{n+1}{2}\right)$$

                                     $$=\dfrac{(n+1)}{2}\left(\dfrac{4n+2-3n-3}{6}\right)$$

                                     $$=\dfrac{n+1}{2}\times \dfrac{n-1}{6}$$

                                     $$=\dfrac{n^2-1}{12}$$
  • Question 9
    1 / -0
    Coefficient of deviation is calculated by the formula:
    Solution
    It is a fundamental concept.
    coefficient of deviation $$=\cfrac{\sigma}{\bar{x}}\times 100$$
    where $$\sigma$$ and $$\bar{x}$$ are standard deviation and mean respectively.
  • Question 10
    1 / -0
    The mean deviation about median from the data
    $$340,150,210,240,300,310,320$$ is
    Solution
    Arrange in increasing order
    150,210,240,300,310,320,340           N=number of data = 7
    median (M) =300
    The mean deviation about median $$=  \frac{150+90+60+0+10+20+40}{7 }= 52.857$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now