$${\textbf{Step-1: Use mean formula and find the mean.}}$$
$$\Rightarrow \sigma^2 = \dfrac{1}{n} \sum x_i^2 - \bar{(x)}^2$$
$$\Rightarrow n = 50, \sum x_i = 2 +4+6+8+...+100$$
$${\text{We know that,}}$$
$$\Rightarrow \bar {x} = \dfrac{\sum x_i}{n}$$
$$\Rightarrow \bar {x} = \dfrac{2 +4+6+8+...+100}{50}$$
$$\Rightarrow \bar {x} = \dfrac{50 \times 51}{50}$$ $$[\because \sum 2n = n(n+1)]$$
$$\Rightarrow \bar {x} = 51$$
$${\textbf{Step-2: Put the values in variance formula.}}$$
$$\Rightarrow \sigma^2 = \dfrac{1}{n} \sum x_i^2 - \bar{(x)}^2$$
$$= \dfrac{1}{50} (2^2 +4^2+6^2+8^2+...+100^2) - {(51)}^2$$
$$= \dfrac{1}{50} [({2.1})^2 +({2.2})^2+({2.3})^2+({2.4})^2+...+({2.50})^2] - {(51)}^2$$
$$= \dfrac{1}{50} 2^2[({1})^2 +({2})^2+({3})^2+({4})^2+...+({50})^2] - {(51)}^2 ...(1)$$
$${\text{But,}}$$
$$\Rightarrow ({1})^2 +({2})^2+({3})^2+({4})^2+...+({n})^2 = \dfrac{n(n+1)(2n+1)}{6}$$
$$\Rightarrow ({1})^2 +({2})^2+({3})^2+({4})^2+...+({50})^2 = \dfrac{50(50+1)(2 \times 50+1)}{6}$$
$$\Rightarrow ({1})^2 +({2})^2+({3})^2+({4})^2+...+({50})^2 = \dfrac{50(51)(101)}{6}$$
$${\text{Equation (1) become,}}$$
$$= \dfrac{1}{50} 2^2[\dfrac{50(51)(101)}{6}] - {(51)}^2$$
$$= 34 \times 101 -2601$$
$$ = 3434-2601$$
$$=833$$
$${\textbf{Thus, option B is correct.}}$$