Self Studies

Correlation Test - 18

Result Self Studies

Correlation Test - 18
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The marks obtained by the students in physics and in mathematics are as follows. 
    Marks in Physics3523471710439628
    Marks in Mathematics3033452384912431
    Compute of correlation of ranks.
    Solution

    Marks of Physics $$(X)$$

    Marks in Maths$$(Y)$$

    $$XY$$

    $$X^2$$

    $$Y^2$$

    35

    23

    47

    17

    10

    43

    9

    6

    28

    30

    33

    45

    23

    8

    49

    12

    4

    31

    1050

    759

    2115

    391

    80

    2107

    108

    24

    868

    1225

    529

    2209

    289

    100

    1849

    81

    35

    784

    900

    1089

    2025

    529

    64

    2401

    144

    16

    961

     

     $$\sum X=218,\quad \sum Y=235,\quad \sum XY=7502,\quad \sum X^2=7102,\quad \sum Y^2=8129$$

    $$N=09$$

    Cov$$(x,y)=\cfrac{\sum XY}{N}-\cfrac{\sum X}{N}.\cfrac{\sum Y}{N}=\cfrac{7502}{09}-\cfrac{218}{9}.\cfrac{235}{9}=201.08$$

    $$\sigma_x=\sqrt{\cfrac{\sum X^2}{N}-\left(\cfrac{\sum X^2}{N}\right)^2}=\sqrt{\cfrac{7102}{09}-\left(\cfrac{218}{09}\right)^2}=14.22$$

    $$\sigma_y=\sqrt{\cfrac{\sum Y^2}{N}-\left(\cfrac{\sum Y^2}{N}\right)^2}=\sqrt{\cfrac{8129}{09}-\left(\cfrac{235}{9}\right)^2}=14.88$$

    $$r=\cfrac{Cov(x,y)}{\sigma_x.\sigma_y}=\cfrac{201.08}{14.22\times 14.88}=0..95$$


  • Question 2
    1 / -0
    Calculate the coefficient of correlation between $$x$$ and $$y$$ for the data
    x12345678910
    y31051294876
    Solution
    $$x\\ 1\\ 2\\ 3\\ 4\\ 5\\ 6\\ 7\\ 8\\ 9\\ 10\\ \_ \_ \_ \_ \_ \_ \_ \_ \_ \\ \sum { x=55 } $$         $$y\\ 3\\ 10\\ 5\\ 1\\ 2\\ 9\\ 4\\ 8\\ 7\\ 6\\ \_ \_ \_ \_ \_ \_ \_ \\ \sum { y=55 } $$                 $$X=x-\overline { x } \\ -4.5\\ -3.5\\ -2.5\\ -1.5\\ -0.5\\ \quad 0.5\\ \quad 1.5\\ \quad 2.5\\ \quad 3.5\\ \quad 4.5\\ \_ \_ \_ \_ \_ \_ \_ \\ \quad 0$$                          $$XY\\ \quad 11.25\\ -15.75\\ \quad 1.25\\ \quad 6.75\\ \quad 1.75\\ \quad 1.75\\ -1.25\\ \quad 6.25\\ \quad 1.75\\ \quad 2.25\\ \_ \_ \_ \_ \_ \_ \_ \\ \quad 16\\ $$                   $${ \quad X }^{ 2 }\\ 20.25\\ 12.25\\ 06.25\\ 02.25\\ 00.25\\ 00.25\\ 02.25\\ 06.25\\ 12.25\\ 20.25\\ \_ \_ \_ \_ \_ \_ \_ \\ 82.50$$

    $${ \quad Y }^{ 2 }\\ 06.25\\ 20.25\\ 00.25\\ 12.25\\ 12.25\\ 02.25\\ 06.25\\ 02.25\\ 00.25\\ \_ \_ \_ \_ \_ \_ \_ \\ \quad 82.50$$

    Therefore, $$\overline { x } =\cfrac { 55 }{ 10 } \\ \quad =5.5$$
    $$\cfrac { \sum { y }  }{ 10 } =5.5$$

    Therefore, $$r=\cfrac { \sum { XY }  }{ \sqrt { \sum { { X }^{ 2 }\sum { { Y }^{ 2 } }  }  }  } \\ =\cfrac { 16 }{ 82.5 } \\ =0.19$$
  • Question 3
    1 / -0
    The marks obtained by nine students in Physics and Mathematics are given below:
    Physics$$48$$$$60$$$$72$$$$62$$$$56$$$$40$$$$39$$$$52$$$$30$$
    Mathematics$$62$$$$78$$$$65$$$$70$$$$38$$$$54$$$$60$$$$32$$$$31$$
    Interpret the result.
    Solution
    Descending order arranged data will be as follows:
    Physics: $$72,62,60,56,52,40,39,30$$
    Mathematics:  $$78,70,65,62,60,54,38,32,31$$
    Thus data will be

    Physics$$(P)$$

    Mathematics $$(M)$$

    Rank $$(P)$$

    Rank $$(P)$$

    $$|d|$$

    $$d^2$$

    98

    60

    72

    62

    56

    40

    39

    52

    30

    62

    78

    65

    70

    38

    54

    60

    32

    31

    6

    3

    1

    2

    4

    7

    8

    5

    9

    4

    1

    3

    2

    7

    6

    5

    8

    9

    2

    2

    2

    0

    3

    1

    3

    3

    0

    4

    4

    4

    0

    9

    1

    9

    9

    0

    $$n=9,\quad \sum d^2=40$$

    $$r=1-\cfrac{6\sum d^2}{n(n^2-1)}=1-\cfrac{40\times 6}{9(9^2-1)}=1-\cfrac{240}{720}=0.66$$

    Since $$r>0$$ we can say that this indicate a moderate positive relationship between marks of physics and mathematics.

  • Question 4
    1 / -0
    The given data shows test scores and sales by nine salesman during last year in a firm. Find regression of Y on X.
    Test Score141924212622152019
    Sales (in 000'Rs )313648375045334139
    Solution

  • Question 5
    1 / -0
    In a skating competition the judges gave the five competitors the following marks. Calculate a coefficient of rank correlation.
    CompetitorsABCDE
    1st judge5.75.85.95.65.5
    2nd judge5.65.76.05.55.8
    Solution

    Competition

    $$1st$$ Judge

    Rank

    $$2nd$$ Judge

    Rank

    $$|d|$$

    $$d^2$$

    A

    B

    C

    D

    E

    5.7

    5.8

    5.9

    5.6

    5.5

    3

    2

    1

    4

    5

    5.6

    5.7

    6.0

    5.5

    5.8

    4

    3

    1

    5

    2

    1

    1

    0

    1

    3

    1

    1

    0

    1

    9

    $$n=5,\quad \sum d^2=12$$

    $$r=1-\cfrac{6\sum d^2}{n(n^2-1)}=1-\cfrac{6\times 12}{5(5^2-1)}=1-\cfrac{72}{240}=0.44$$

  • Question 6
    1 / -0
    If the dependent variable increases as the independent variable increases in an estimating equation, the coefficient of correlation will be in the range of _________.
  • Question 7
    1 / -0
    Match the following items in List - I with most suitable options in List - II:
    List-IList-II
    (a) Fisher1. Inverse probability
    (b) Karl Pearson2. Normal Distribution
    (c) Thomas Baye's3. Correlation Coefficient
    (d) Karl Gauss4. Index Numbers
  • Question 8
    1 / -0
    Karl Pearson's co-efficient of correlation between two variables is _____________.
  • Question 9
    1 / -0
    Following are the ranks of $$10$$ students in Maths and Biology projects given by $$2$$ professors. Find the rank correlation coefficient.
    Maths48531210769
    Biology14562389710
    Solution
    Let the ranks of students obtained in Maths be $$x$$ and the ranks of students obtained in Biology be $$y$$.

     $$x$$ $$4$$$$8$$ $$5$$  $$3$$$$1$$ $$2$$ $$10$$ $$7$$ $$6$$ $$9$$ 
     $$y$$ $$1$$ $$4$$$$5$$  $$6$$ $$2$$$$3$$  $$8$$ $$9$$$$7$$ $$10$$ 
    $$d=x-y$$  $$3$$ $$4$$ $$0$$$$-3$$  $$-1$$ $$-1$$ $$2$$$$-2$$  $$-1$$ $$-1$$
     $$d^2$$ $$9$$ $$16$$ $$0$$$$9$$  $$1$$ $$1$$ $$4$$ $$4$$ $$1$$ $$1$$
          $$\sum d^2$$ $$=46$$     

    The rank correlation coefficient is given by
    $$r=1-\dfrac{6\sum d^2}{n(n^2-1)}$$
    $$=1-\dfrac{6 \times 46}{10(100-1)}$$
    $$=1-\dfrac{276}{10 \times 99}$$
    $$=1-\dfrac{276}{990}$$
    $$=1-0.2787$$
    $$=0.7213$$
    Therefore, the rank correlation coefficient is $$0.7213$$.
  • Question 10
    1 / -0
    If bxy$$=0.25$$ and byx$$=0.64$$, correlation coefficient is _________.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now