Self Studies

Sets Test - 33

Result Self Studies

Sets Test - 33
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    In a city, three daily newspapers A, B, C are published, $$42\%$$ read A; $$51\%$$ read B; $$68\%$$ read C; $$30\%$$ read A and B; $$28\%$$ read B and C; $$36\%$$ read A and C; $$8\%$$ do not read any of the three newspapers.
    What is the percentage of persons who read only one paper ?
    Solution
    Let total numbers of people be 100, So for newspapers
    $$n(A)=42, n(B)=51, n(C)=68, n(A\cap B)=30$$
    $$ n(B\cap C)=28$$
    $$ n(A\cap C)=36$$

    Also given, $$ n(\overline { A\cup B\cup C) } =8$$
    $$ n(A\cup B\cup C)=100-n(\overline { A\cup B\cup C) } =100-8=92$$
    Also,
    $$ n(A\cup B\cup C)=n(A)+n(B)+n(C)-n(A\cap B)-n(B\cap C)-n(A\cap C)+n(A\cap B\cap C)$$
    $$92=42+51+68-30-28-36+n(A\cap B\cap C)$$
    $$n(A\cap B\cap C)=25$$
    Now,
    People who read only one paper $$=n(A)+n(B)+n(C)-2n(A\cap B)-2n(B\cap C)-2n(A\cap C)+3n(A\cap B\cap C)$$
    $$=42+51+68-60-56-72+75$$
    $$=48$$
    Hence, B is correct.
  • Question 2
    1 / -0
    If $$a\mathbb{N}=(an:n\in \mathbb{N})$$ and $$b\mathbb{N}\cap c\mathbb{N}=d\mathbb{N}$$, where $$a,b,c\in \mathbb{N}$$ and $$b,c$$ are coprime, then
    Solution
    Given : $$a\mathbb{N}=(an:n\in \mathbb{N})$$ and $$b\mathbb{N}\cap c\mathbb{N}=d\mathbb{N}$$, where $$a,b,c\in \mathbb{N}$$ and $$b,c$$ are coprime
    We have,
    $$b\mathbb{N}=(bn:n\in \mathbb{N})$$, $$c\mathbb{N}=(cn:n\in \mathbb{N})$$ 
    and $$d\mathbb{N}=(dn:n\in \mathbb{N})$$ 
    Also, $$bc\in b\mathbb{N} \cap c\mathbb{N}=d\mathbb{N}$$
    $$\therefore$$ $$bc=d$$ ..... $$[\because b,c$$ are coprime$$]$$.
  • Question 3
    1 / -0
    If A and B are finite sets and $$A \subset B$$, then
    Solution
    A and B are finite set and $$A\subset B$$
    $$A\subset B$$ means A is a subset of B
    If A is subset of B, then all elements of A are present in B
    $$\therefore n\left( A\bigcup { B }  \right) =n\left( B \right) $$

  • Question 4
    1 / -0
    A college awarded $$38$$ medals in football, $$15$$ in basketball and $$20$$ in cricket. If these medals went to a total of $$58$$ men and only three men got medals in all the three sports. Then the number of students who received medals in exactly two of the three sports, is
    Solution


    $$\textbf{Step – 1: Formulating the information to use Inclusion-Exclusion Rule.}$$

                    $$\text{Let number of men who have got medals in football, basketball, and cricket be represented as}$$ 
                    $$n(F),n(B)$$ and $$n(C)$$.

                    $$\text{Therefore the number of men who won in all the three sports will be}$$ $$n(F \cap B \cap C)$$

                    $$\text{and the number of people who got medals in two of the three sports is}$$ 

                    $$n(F \cap B) + n(B \cap C) + n(C \cap F)$$

                    $$\text{and the total number of men is represented as}$$ $$n(F \cup B \cup C)$$.

                    $$\text{From the given data we have:}$$

                    $$n(F) = 38$$

                    $$n(B) = 15$$

                    $$n(C) = 20$$

                    $$n(F \cup B \cup C) = 58$$

                    $$n(F \cap B \cap C) = 3$$

    $$\textbf{Step – 2: Apply the Inclusion-Exclusion Rule}$$.

                    $$\text{Using the Inclusion-Exclusion Rule we get:}$$

                    $$n(F \cup B \cup C) = n(F) + n(B) + n(C) - n(F \cap B) - n(B \cap C) -  n(C \cap F) + n(F \cap B \cap C)$$

                    $$\Rightarrow 58 = 38 + 15 + 20 - n(F \cap B) - n(B \cap C) - n(C \cap F) + 3 $$

                    $$\Rightarrow n(F \cap B) + n(B \cap C) + n(C \cap F) = 38 + 15 + 20 + 3 - 58 $$

                    $$\Rightarrow n(F \cap B) + n(B \cap C) + n(C \cap F) = 18 $$

                    $$\therefore\text{ the number of students who have received medals in exactly two of the three sports is}$$

                    $${= n(F \cap B) + n(B \cap C) + n(C \cap F) - 3 \times n(F \cap B \cap C) }$$

                    $${= 18 - 3 \times 3 }$$

                    $${= 18 - 9}$$

                    $${= 9}$$

    $$\textbf{Hence, the number of students who have received medals in exactly two of the three sports is 9}$$

     

  • Question 5
    1 / -0
    The set $$(A\cup B\cup C) \cap (A\cap B'\cap C')\cap C'$$ is equal to?
    Solution
    $$(A\cup B\cup C) \cap (A\cap B'\cap C')\cap C'$$
    $$=(A\cup B\cup C) \cap (A'\cap B\cap C)\cap C'$$
    $$= [(A\cap A')\cup (B\cup C)]\cap C'$$
    $$= (\phi \cup B\cup C)\cap C' = (B\cup C)\cap C'$$
    $$= (B\cap C') \cup (C\cap C')$$
    $$= (B\cap C') \cup \phi = B\cap C'$$.
  • Question 6
    1 / -0
    If $$A/B=\left\{ a,b \right\} ,B\setminus A=\left\{ c,d \right\} $$ and $$A\cap B=\left\{ e,f \right\} $$ then the set $$B$$ is equal to
    Solution
    Given, $$A/B=\left\{ a,b \right\} ,B\setminus A=\left\{ c,d \right\} $$

    and $$A\cap B=\left\{ e,f \right\} $$ 

    $$\therefore A-B=\left\{ a,b \right\} ...(i)\quad $$
    $$B-A=\left\{ c,d \right\} ...(ii)$$

    $$A\cap B=\left\{ e,f \right\} ...(iii)$$
    From Eqs. (i),(ii),(iii) we get

    $$B=\left\{ c,d,e,f \right\} $$
  • Question 7
    1 / -0
    Let $$X$$ and $$Y$$ be two non-empty sets such that $$X\cap A=Y\cap A=\phi$$ and $$X\cup A=Y\cup A$$ for some non-empty set $$A$$. Then which of the following is true?
    Solution
    We have, $$X\cup A=Y\cup A$$
    $$\Rightarrow X\cap \left( X\cup A \right) =X\cap \left( Y\cup A \right)$$
    $$\Rightarrow X=\left( X\cap Y \right) \cup \left( X\cap A \right) $$         $$\left[ \because X\cap \left( X\cup A \right) =X \right] $$
    $$\Rightarrow X=\left( X\cap Y \right) \cup \phi $$         $$\left[\because X\cap A=\phi \right]$$
    $$\Rightarrow X=X\cap Y$$              .....(i)
    Again, $$X\cup A=Y\cup A$$
    $$\Rightarrow Y\cap \left( X\cup A \right) =Y\cap \left( Y\cup A \right)$$
    $$\Rightarrow \left( Y\cap X \right) \cup \left( Y\cap A \right) =Y$$
    $$\Rightarrow \left( Y\cap X \right) \cup \phi =Y$$
    $$\Rightarrow Y\cap X=Y$$
    $$\Rightarrow X\cap Y=Y$$                  ....(ii)
    From equations (i) and (ii), we get
    $$X=Y$$
  • Question 8
    1 / -0
    If $$A = \left \{(x, y) : x^{2} + y^{2} \leq 1; x, y \epsilon R\right \}$$ and $$B = \left \{(x, y) : x^{2} + y^{2} \geq 4; x, y \epsilon R\right \}$$, then
    Solution
    $$A$$ is the set of all points on the inner circle $$x^{2} + y^{2} = 1. B$$ is the set of all points on the outer circle $$x^{2} + y^{2} = 4$$.
    $$\therefore A - B = A, B - A = B, A\cap B = \phi$$.

  • Question 9
    1 / -0
    If $$X = \left \{1, 2, 3, ..., 10\right \}$$ and $$A = \left \{1, 2, 3, 4, 5\right \}$$. Then, the number of subsets $$B$$ of $$X$$ such that $$A - B = \left \{4\right \}$$ is
    Solution
    Given, $$X = \left \{1, 2, 3, ...., 10\right \}$$
    and $$A = \left \{1, 2, 3, 4, 5\right \}$$
    Now, $$A - B = \left \{4\right \}$$
    $$\Rightarrow B = A - \left \{4\right \} = \left \{1, 2, 3, 4, 5\right \} - \left \{4\right \}$$
    $$= \left \{1, 2, 3, 5\right \}$$
    $$\therefore X - \left \{4\right \} - B$$
    $$= \left \{1, 2, 3, ..., 10\right \} - \left \{4\right \} - \left \{1, 2, 3, 5\right \}$$
    $$= \left \{6, 7, 8, 9, 10\right \}$$
    Therefore,number of subsets $$B$$ of $$X$$ i.e., $$\left \{6, 7, 8, 9, 10\right \}$$ $$= 2^{5}$$.
  • Question 10
    1 / -0
    If $$n(A)=10,n(B)=6$$ and $$(C)=5$$ for three disjoint sets $$A,B,C$$ then $$n(A\cup B\cup C)$$ equals
    Solution
    Since, $$A,B,C$$ are disjoint sets

    $$\therefore n(A\cup B\cup C)=n(A)+n(B)+n(C)$$

    $$=10+6+5=21$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now