Self Studies

Sets Test - 38

Result Self Studies

Sets Test - 38
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    In a selection process, a hundred candidate participate in Group Discussion sessions (GD) and Personal Interview (PI). The possibilities of a candidate's good performance in GD and in PI are independent of each other. It was found that $$20$$ candidates were good in GD and $$30$$ were good in PI. The number of candidates good in both GD and PI is expected to be about:
    Solution

    $$P(GD and PI)\\=P(GD)\times P(PI)\\=(\frac{20}{100})\times(\frac{30}{100})\\=(\frac{6}{100})\\\therefore no. of candidates expected\\=P(GD and PI)\times100\\=6$$

    So, the correct option is '6'.

  • Question 2
    1 / -0
    Let $$A\subset B$$ then $$A'\cap B'=$$
    Solution
    Now, given $$A\subset B$$.
    This gives $$A\cup B=B$$......(1).
    Now,
    $$A'\cap B'$$
    $$=(A\cup B)'$$ [ Using De Morgan's law]
    $$=B'$$. [ Using (1)]
  • Question 3
    1 / -0
    $$s = \{ x \in N:2 + {\log _2}\sqrt {x + 1}  > 1 - {\log _{1/2}}\sqrt {4 - {x^2}} \} $$ , then
    Solution

  • Question 4
    1 / -0
    Range of the function f(x) = cos (K sinx) is [-1, 1], then the positive integral value of K can be?
    Solution

  • Question 5
    1 / -0
    If n(U) = 50, n(A) = 20, $$n((A \cup B)')$$  = 18 then n(B - A) is
    Solution
    $$n(U)=50, n(A)=20$$
    $$n(A\cup B)=18$$            $$n(B-A)=?$$
    So, $$n(A\cup B)=n(0)-n(A\cup B)$$
    So. $$n(A\cup B)=32$$
    $$n(B-A)=n(A\cup B)-n(A)$$
    $$=32-20$$
    $$n(B-A)=12$$
  • Question 6
    1 / -0
     Let $$N$$ be the set of non-negative integers, $$I$$ the set of integers,$$N_p$$ the set of non-positive integers, $$E$$ the set of even integers and $$P$$ the set of prime numbers. Then
    Solution
    By option verification,

    $$I-N=N_p$$

    $$I$$ is the set of integers,$$ \implies N\cup N_p$$

    $$N$$ is set of non-negative integers,

    $$N_p$$ is non-positive integers.

    So $$I-N=N\cup N_p-N=N_p$$
  • Question 7
    1 / -0
    The number of elements in the set $$\left\{ \left( a,b \right) /2{ a }^{ 2 }+3{ b }^{ 2 }=35,a,b\in z \right\} $$ when $$z$$ is the set of all integers is
    Solution
    Let $$2x+3y=35,\quad x, y > 0$$
    Integral solution $$\Rightarrow \quad (a^2=x, y^2=b^2)$$
    $$\therefore \ (a^2 , b^2)=(4, a)$$ and $$(16, 1)$$
    $$\therefore \ (a, b)\cong (2, 3), (-2, -3), (2, -3), (-2, 3), (4, 1), (-4, -1), (-4, 1), (4, -1)$$
    $$\therefore \ 8$$ elements $$\Rightarrow (C)$$

  • Question 8
    1 / -0
    If $$A=\{4^n-3n-1:n\in N\}$$ and $$B=\{9(n-1): n\in N\}$$, then?
    Solution
    $$ { 4^{ n } }-3n-1,n\in N \\ { \left( { 3+1 } \right) ^{ n } }-3n-1 \\ by\, u\sin  g\, binomal\, ension \\ \Rightarrow \left[ { 1+3n{ +^{ n } }{ C_{ 2 } }\cdot { 3^{ 2 } }{ +^{ n } }{ C_{ 3 } }\cdot { 3^{ 3 } }+{ { ...... }^{ n } }{ C_{ n } }\cdot { 3^{ n } } } \right] -3n-1 \\ \Rightarrow 1+3n+{ 9^{ n } }{ C_{ 2 } }+{ 27^{ n } }{ C_{ 3 } }+{ ....3^{ n } }-3n-1 \\ \Rightarrow 9\left( { ^{ n }{ C_{ 2 } }+{ 3^{ n } }{ C_{ 3 } }+{ { ..... }^{ n } }{ C_{ n } }{ 3^{ \left( { n-2 } \right)  } } } \right)  \\ Which\, is\, divisible\, by\, \left( q \right) , \\ All\, element\, of\left( B \right) is\, including\, in\, \left( A \right)  \\ B\subset A \\  $$
  • Question 9
    1 / -0
    $$A \cup B= A \cap B$$ if : 
    Solution
    $$\Rightarrow A\cup B=A\cap B$$
    $$\Rightarrow A=B$$
  • Question 10
    1 / -0
    The set $$ \left( A\cup B\cup C \right) \cap \left( A\cap B'\cap C' \right) '\cap C'$$ is equal to 
    Solution
    $$ (A\cup B\cup C)\bigcap (A\bigcap {B}'\cap {C}'),'\cap {C}'$$
    $$ (A\cup B\cup  C)\cap ({A}'\cup B\cup C)\cap {C}' $$
    $$ \left [ (A\cap {A}')\phi \cup (A\cap B)\cup (A\cap C)\cup(B\cap {A}' )\phi\cup (B\cap B)\phi \cup (B\cap C)\cap {C}'  \right ]$$
    $$ \left [ (A\cap B) \cup (A\cap C)\cup (B\cap C) \right ] \cap {C}'$$
    $$ (A\cap B\cap {C}') \cup (A\cap \dfrac{C\cap {C}'}{\phi })\cup (B\cap \dfrac{C\cap {C}'}{\phi })$$
    $$ (A\cap B\cap {C}') \cup (A\cap \phi ) \cup (B\cap \phi )$$
    $$ (A\cap B\cap {C}') \cup \phi \cup \phi $$
    $$ = A\cap B\cap {C}'$$

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now