Self Studies

Introduction to Three Dimensional Geometry Test - 12

Result Self Studies

Introduction to Three Dimensional Geometry Test - 12
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Ratio in which the $$xy-$$plane divides the join of $$(1, 2, 3)$$ and $$(4, 2, 1)$$ is 
    Solution
    Points $$A(1,2,3),B(4,2,1)$$
    $$x-y$$ plane $$\Rightarrow z=0$$
    $$\therefore$$ lines containing $$A,B$$ is $$\cfrac { x-1 }{ 3 } =\cfrac { y-2 }{ 0 } =\cfrac { z-3 }{ -2 } $$
    point of intersection of line and $$xy$$ plane is $$(\cfrac { 11 }{ 2 } ,2,0)$$
    $$\therefore (\cfrac { 4\lambda +1 }{ \lambda +1 } ,\cfrac { 2\lambda +2 }{ \lambda +1 } ,\cfrac { \lambda +3 }{ \lambda +1 } )=(\cfrac { 11 }{ 2 } ,2,0)\\ \Rightarrow \lambda =-3$$
    Answer $$(B)$$

  • Question 2
    1 / -0
    The equation of the set of points which are equidistant from the points $$(1, 2, 3)$$ and $$(3, 2, -1)$$.
    Solution
    Let the given points be A($$1,2,3$$) and B($$3,2,-1$$) and let the point equidistant from A and B be P($$x,y,z$$) 
    then  $$PA=PB$$
    $$\sqrt {{{(x - 1)}^2} + {{(y - 2)}^2} + {{(z - 3)}^2}}  = \sqrt {{{(x - 3)}^2} + {{(y - 2)}^2} + {{(z + 1)}^2}} $$
    Squaring both sides
    $${(x - 1)^2} + {(y - 2)^2} + {(z - 3)^2} = {(x - 3)^2} + {(y - 2)^2} + {(z + 1)^2}$$
    $${x^2} + 1 - 2x + {z^2} + 9 - 6z = {x^2} + 9 - 6x + {z^2} + 1 + 2z$$
    $$-2x-6z+10=-6x+2z+10$$
    $$4x-8z=0$$
    $$x-2z=0$$

  • Question 3
    1 / -0
    $$A(3, 2, 0), B(5, 3, 2), C(-9, 6, -3)$$ are three points forming a triangle. If $$AD$$, the bisector of $$\angle BAC$$ meets $$BC$$ in $$D$$ then coordinates of $$D$$ are
    Solution
    According  to question,
    $$\begin{array}{l} AB=\sqrt { 4+1+4 } =3 \\ AC=\sqrt { 144+16+9 } =13 \\ BD:DC=AB:AC=3:13 \\ D=\left( { \dfrac { { 3(-9)+13(5) } }{ { 3+13 } } ,\dfrac { { 3(6)+13(3) } }{ { 3+13 } } ,\dfrac { { 3(-3)+13(2) } }{ { 3+13 } }  } \right)  \\ \, \, =\left( { \dfrac { { -38 } }{ { 16 } } ,\dfrac { { 57 } }{ { 16 } } ,\dfrac { { 17 } }{ { 16 } }  } \right)  \\ \, \, \, \, \, \, \, \, \, \therefore \, \, \, \left( { \dfrac { { -19 } }{ 8 } ,\dfrac { { 57 } }{ { 16 } } ,\dfrac { { 17 } }{ { 16 } }  } \right)  \\ So,the\, \, correct\, \, option\, \, is\, \, A. \end{array}$$

  • Question 4
    1 / -0
    $$A=\left(2,4,5\right)$$ and $$B=\left(3,5,-4\right)$$ are two points. If the $$xy$$-plane,  $$yz$$-plane divide $$AB$$ in the ratios $$a:b,p:q$$ respectively then $$\dfrac{a}{b}+\dfrac{p}{q}$$=
    Solution
    $$A(2,4,5),B(3,5,-4)$$
    xy plane $$\Rightarrow z=0$$
    yz plane $$\Rightarrow x=0$$
    line through $$A$$ & $$B$$ $$\Rightarrow \cfrac { x-2 }{ 1 } =\cfrac { y-4 }{ 1 } =\cfrac { z-5 }{ -9 } =t$$
    $$\therefore$$ let $$P(t+2,t+4,-9t+5)$$ be point of intersection of line with xy plane.
    $$\therefore P=(\cfrac { 23 }{ 9 } ,\cfrac { 41 }{ 9 } ,0)$$
    Similarly,for $$Q(t+2,t+4,9t+5)$$ be point of intersection of line with yz plane $$\Rightarrow t=-2$$.
    $$Q(0,2,23)$$
    (i)let $$P$$ divide $$AB$$ in $$1:\lambda (a:b)$$
    $$\therefore (\cfrac { 23 }{ 9 } ,\cfrac { 41 }{ 9 } ,0)=(\cfrac { 2\lambda +3 }{ \lambda +1 } ,\cfrac { 4\lambda +5 }{ \lambda +1 } ,\cfrac { 5\lambda -4 }{ \lambda +1 } )\\ \Rightarrow \lambda =\cfrac { 4 }{ 5 } \\ \therefore \cfrac { a }{ b } =\cfrac { 5 }{ 4 } $$
    (ii)let $$Q$$ divide $$AB$$ in $$\lambda:1 (p:q)$$
    $$\therefore (0,2,23)=(\cfrac { 2+3\lambda  }{ \lambda +1 } ,\cfrac { 4+5\lambda  }{ \lambda +1 } ,\cfrac { 5-4\lambda  }{ \lambda +1 } )\\ \Rightarrow \lambda =\cfrac { -2 }{ 3 } \\ \therefore \cfrac { p }{ q } =\cfrac { -2 }{ 3 } \\ \therefore \cfrac { a }{ b } +\cfrac { p }{ q } =\cfrac { 5 }{ 4 } -\cfrac { 2 }{ 3 } =\cfrac { 7 }{ 12 } $$
  • Question 5
    1 / -0
    If $$z = \cos \dfrac{\pi }{6} + i\sin \dfrac{\pi }{6}$$, then
    Solution
    if $$z=\cos \left(\dfrac{\pi}{6}\right)+i\sin \left(\dfrac{\pi}{6}\right)$$ then.
    As $$z=|z|e^{i arq (z)}$$
    $$\therefore z=\cos \left(\dfrac{\pi}{6}\right)+i\sin \left(\dfrac{\pi}{6}\right)=e^{i\left(\pi/6\right)}\quad [\because e^{i\theta}=\cos\theta+i\sin \theta]$$
    $$\Rightarrow |z|=1,  arq=\dfrac{\pi}{6}$$
  • Question 6
    1 / -0
    The x-coordinate of a point on the line joining the points $$P(2,2,1)$$ and $$Q(5,1,-2)$$ is $$4$$. Find its z-coordinate.
    Solution
    $$P(2,2,1),Q(5,1,-2)$$

    $$\therefore$$ Equation of line through $$P$$ & $$Q$$,

    $$\cfrac { x-2 }{ 2-5 } =\cfrac { y-2 }{ 2-1 } =\cfrac { z-1 }{ 1+2 } \\ \Rightarrow \cfrac { x-2 }{ -3 } =\cfrac { y-2 }{ 1 } =\cfrac { z-1 }{ 3 } =r$$

    $$\therefore P$$ be point of line 

    $$\Rightarrow P\equiv (-3r+2,r+2,3r+1)$$

    $$ \therefore -3r+2=4$$ ($$\because $$ since x-coordinate is $$4$$)

    $$\Rightarrow r=\cfrac { -2 }{ 3 } $$

    $$\therefore$$ z-coordinate $$=3r+1=-1$$
  • Question 7
    1 / -0
    Solve the following differential equation.
    $$\dfrac{dy}{dx}=x-1$$.
    Solution

    Given,
    $$\dfrac{dy}{dx}=x-1$$.

    Integrating on both sides 

    $$\displaystyle \int \dfrac {dy}{dx}=\int x-1\  dx$$

    $$y=x^2-x +c$$

  • Question 8
    1 / -0
    The distance between (5,1,3) and the line x=3, y=7+t, z=1+t is
    Solution
    $$\begin{array}{l} x=3\, \, \, ,y=7+t\, \, ,z=1+t \\ A\left( { 3,7+t,1+t } \right)  \\ 0.\left( { 3-5 } \right) +1\left( { 7+t-1 } \right) +1\left( { 1+t-3 } \right) =0 \\ 6+t+t-2=0 \\ 2t=-4 \\ t=-2 \\ A:\left( { 3,5,-1 } \right)  \\ dis\tan  ce=\sqrt { 4+16+16 }  \\ =6 \\ Option\, \, C\, \, is\, \, correct\, \, answer. \end{array}$$
  • Question 9
    1 / -0
    The perimeter of triangle with vertices at $$(1,0,0) , (0,1,0) and (0,0,1)$$ is :
    Solution
    REF.Image
    $$AB=\sqrt{1+1+0}=\sqrt{2}$$
    $$BC=\sqrt{0+1+1}=\sqrt{2}$$
    $$AC=\sqrt{1+0+1}=\sqrt{2}$$
    Hence, perimeter of $$\triangle ABC$$ is given by
    $$AB+BC+AC= 3\sqrt{2}$$

  • Question 10
    1 / -0
    If the points $$A(9, 8, -10), B(3, 2, -4)$$ and $$C(5, 4, -6)$$ be collinear, then the point $$C$$ divides the line $$AB$$ in the ratio 
    Solution
    REF.Image
    Let the ratio be K:1
    Then, using section formula
    we have
    $$C(5,4,-6)=\frac{K(3,2,-4)+(9,8,-10)}{K+1}$$
    $$\Rightarrow 5=\frac{3K+9}{K+1}$$
    $$\Rightarrow 5K= 3K+4$$
    $$\Rightarrow 2K=4$$
    $$K=2$$
    $$\Rightarrow $$ C divides AB in ratio 2:1

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now