Self Studies

Introduction to Three Dimensional Geometry Test - 17

Result Self Studies

Introduction to Three Dimensional Geometry Test - 17
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If the orthocentre, circumcentre of a triangle are $$(-3, 5, 2), (6, 2, 5)$$ respectively then the centroid of the triangle is
    Solution

    Since, the centroid divides the line joining the orthocentre and circumcentre in the ratio $$2:1$$

    The coordinates of the centroid will be,

    ($$ \dfrac{9}{3} , \dfrac{9}{3}, \dfrac{12}{3} $$)

    $$= (3,3,4)$$ 

  • Question 2
    1 / -0
    If $$\mathrm{A}= (-1,6, 6)$$ , $$\mathrm{B}=(-4,9, 6)$$ , $$\displaystyle \mathrm{G}=\frac{1}{3}(-5,22,22)$$ and $$\mathrm{G}$$ is the centroid of the $$\Delta \mathrm{A}\mathrm{B}\mathrm{C}$$ then the name of the triangle $$\mathrm{A}\mathrm{B}\mathrm{C}$$ is
    Solution
    The centroid of a triangle if given by
    $$G=((\dfrac{x_{1}+x_{2}+x_{3}}{3}),\dfrac{y_{1}+y_{2}+y_{3}}{3}),\dfrac{z_{1}+z_{2}+z_{3}}{3}))$$
    Let the coordinates of C be $$(x,y,z)$$; then
    $$G=(\dfrac{-5}{3},\dfrac{22}{3},\dfrac{22}{3})=(\dfrac{x-1-4}{3},\dfrac{y+6+9}{3},\dfrac{z+6+6}{3})$$
    Comparing LHS and RHS gives us
    $$x-5=-5$$ or $$x=0$$; similarly $$y+15=22$$ or $$y=7$$. and $$z+12=22$$ or $$z=10$$.
    Hence
    $$C=(0,7,10)$$.
    Thus the coordinates of the vertices of the triangle are
    $$A(-1,6,6)$$ $$B=(-4,9,6)$$ and $$C(0,7,10)$$.
    Now
    $$AB=3\sqrt{2}$$
    $$BC=6$$
    $$AC=3\sqrt{2}$$
    Now
    $$AB^{2}+AC^{2}=(3\sqrt{2})^{2}+(3\sqrt{2})^{2}=18+18=36$$
    $$=BC^{2}$$.
    Hence it is a right angled isosceles triangle right angled at A
  • Question 3
    1 / -0
    The extremities of a diagonal of a rectangular parallelopiped whose faces are parallel to the reference planes are $$(-2, 4, 6)$$ and $$(3, 16, 6)$$. The length of the base diagonal is
    Solution
    $$AC=$$ base diagonal

    where,

    $$A(-2,4,6),C(3,16,6)$$

    $$=\sqrt{(3+2)^2+(16-4)^2+(6-6)^2}$$

    $$=\sqrt{5^2+12^2}$$

    $$=13$$
  • Question 4
    1 / -0
    In the tetrahedron $$ABCD,\ A= (1, 2, -3)$$ and $$G(-3,4, 5)$$ is the centroid of the tetrahedron. If $$P$$ is the centroid of the $$\Delta BCD$$, then $$AP=$$
    Solution

    Given, $$A=(1,2,-3), G(-3,4,5)$$


    Therefore, $$AG=\sqrt { { (-3-1) }^{ 2 }+{ (4-2) }^{ 2 }+{ (5-(-3)) }^{ 2 } } $$


    and $$ AG=\sqrt { 84 } =2\sqrt { 21 } $$


    $$P$$ is the centroid of $$\triangle BCD$$


    So, $$G$$ divides $$AP$$ in $$3:1$$.


    Let $$AG=3x$$, then $$GP=x$$


    $$3x=2\sqrt { 21 } \\ x=\dfrac { 2\sqrt { 21 }  }{ 3 } $$


    Now $$AP=AG+GP$$


    $$\Rightarrow AP=3x+x$$


    $$ \Rightarrow AP=4x$$


    $$ \Rightarrow AP=4\left( \dfrac { 2\sqrt { 21 }  }{ 3 }  \right) =\dfrac { 8\sqrt { 21 }  }{ 3 } $$


    So, option A is correct.

  • Question 5
    1 / -0
    In the $$\Delta $$ ABC , A $$=$$ (1, 3, -2) and G (-1, 4, 2) is the centroid of the triangle. If D is the mid point of BC then AD $$=$$
    Solution
    First, we calculate the distance AG,
    It is $$ {(4+1+16)}^{0.5} =  {21}^{0.5} $$ 
    From the property of the centroid that it divides the line joining AD in the ratio 2:1,
    The distance$$ AD = \frac{3}{2} $$AG
    Hence,$$ AD =  \frac{3}{2} {21}^{0.5} $$
  • Question 6
    1 / -0
    The harmonic conjugate of $$(2, 3, 4)$$ with respect to the points $$(3, -2, 2)$$ and $$(6, -17, -4)$$ is
    Solution
    Let us assume that point $$(2,3,4)$$ divides $$(3,-2,2)$$ and $$(6,-17,-4)$$ in the ratio $$\lambda:1$$
    We have $$\frac{6\lambda+3}{1+\lambda}=2$$
    $$\Rightarrow \lambda=-\frac{1}{4}$$
    Therefore point $$(2,3,4)$$ divides given two points in the ratio $$1:4$$ externally
    Let the point which divides the given two points in the ratio $$1:4$$ internally be $$(x,y,z)$$
    We have $$x=\frac{6+12}{5}=\frac{18}{5}$$ , $$y=\frac{-17-8}{5}=-5$$ and $$z=\frac{-4+8}{5}=\frac{4}{5}$$
    Therefore option $$A$$ is correct
  • Question 7
    1 / -0
    $$A = (2, 3, 0)$$ and $$B = (2,1, 2)$$ are two points. If the points $$P, Q$$ are on the line $$AB$$ such that $$AP= PQ = QB$$, then $$PQ=$$
    Solution
    $$AB =\sqrt{(2-2)^2+(3-1)^2+(0-2)^2}=\sqrt 8 $$
    Since $$AP=PQ=QB$$
    $$\therefore PQ =\dfrac{AB}{3}=\dfrac{\sqrt 8}{3}=\sqrt{\dfrac{8}{9}}$$
  • Question 8
    1 / -0
    If the points $$A,B,C,D$$ are collinear and $$C,D$$ divide $$AB$$ in the ratios $$2:3, -2:3$$ respectively, then the ratio in which $$A$$ divides $$CD$$ is
    Solution
    $$C$$ divide $$AB$$ in the ratio of $$2:3$$

    $$\Rightarrow AC=2x,CB=3x$$

    $$D$$ divide $$AB$$ in the ratio of $$-2:3$$

    $$\Rightarrow DA=2y,DB=3y$$

    $$\Rightarrow AB=DB-DA=y$$

    $$\Rightarrow 5x=y\Rightarrow x=\dfrac { y }{ 5 } $$

    $$\Rightarrow CA:AD=2x:2y=\dfrac { x }{ y } = \cfrac{\dfrac y5}{y} = \cfrac15$$

    $$\Rightarrow$$ $$A$$ divides $$CD$$ in the ratio $$1:5$$

  • Question 9
    1 / -0
    Then the correct matching is
    List - I
    List - II
    A: The coordinates of the
    mid point of the line joining

    $$(-1,-1,1)$$ and $$(-1,1,-1)$$


    1) $$(-2,1,1)$$

    B: The coordinates of the
    point which divides the
    line segment joining

    $$($$2,3,1 $$)$$ and $$(5, 0,4)$$
    in the ratio1:2


    2) $$(-1,0,0)$$


    $$\mathrm{C}$$: The points and $$P(2,1, -3)$$
    are three vertices of a
    parallelogram $$\mathrm{P}\mathrm{Q}\mathrm{R}\mathrm{S}$$,
    the fourth vertex


     3) $$(\displaystyle \frac{13}{3},\frac{-11}{3},6)$$


    $$\mathrm{D}$$: The vertices of a triangle
    are $$(7,-4,7)$$ , $$(1,-6,10)$$
    and $$(5, -1,1)$$ . centroid of the
    triangle

    4) $$($$3, 2, 2 $$)$$


    Solution
    A: The co-ordinate of the mid point of the line joining $$(-1,-1,1) $$ and $$(-1,1,-1)$$
    from mid point formula $$\left( \dfrac {-1-1}{2},\dfrac{-1+1}{2},\dfrac{1-1}{2}\right)$$
    $$=(-1,0,0)$$
    $$A\rightarrow 2$$

    B: co-ordinates of the point which divides the line segment Joining
    $$(2,3,1)$$ and $$(5,0,4) $$ in ratio $$1:2$$
    so from section formula $$\left(\dfrac{m_1x_2+m_2x_1}{m_1+m_2},\dfrac{m_1y_2+m_2y_1}{m_1+m_2},\dfrac{m_1z_2+m_2z_1}{m_1+m_2}\right)$$
    Here $$m_1=1,m_2=2$$
    so $$=\left(\dfrac {1\times +2\times 2}{3},\dfrac{1(0)+2(3)}{3},\dfrac{1(4)+2(1)}{3}\right)$$
    $$=(3,2,2)$$
    $$B\rightarrow 4$$

    C: The point $$(2,3,1),(5,0,4)$$ and $$(2,1,-3)$$ and $$A(x,y,z)$$ vertices of a parallelogram $$PQRS$$ then fourth vertex 
    we know that the diagonals of parallelogram bisect each other have they mid point of $$PR=$$ mid point of $$QS$$   .... [Ref. image]
    $$\Rightarrow \left(\dfrac{2+5}{2},\dfrac{1}{2},\dfrac{1}{2}\right)=\left(\dfrac{x+2}{2},\dfrac{y+3}{2},\dfrac{z+1}{2}\right)$$
    $$\Rightarrow \dfrac{x+2}{2}=\dfrac{7}{2} \Rightarrow x=5$$
    $$\Rightarrow \dfrac{y+3}{2}=\dfrac{-1}{2} \Rightarrow y=-2$$
    $$ \Rightarrow \dfrac{z+1}{2}= \dfrac{1}{2} \Rightarrow z=0$$

    D: The vertixes of a triangle $$ax$$ $$(7,-4,7),(1,-6,10)$$ and $$(5,-1,1)$$ Centroid of triangle 
    Then centroid $$=\left(\dfrac{7+1+5}{3},\dfrac{-4-6-1}{3},\dfrac{7+10+1}{3}\right)$$
    $$=\left(\dfrac{13}{3},\dfrac{-11}{3},6\right)$$
    $$D \rightarrow 3$$
    Hence correct option is A

  • Question 10
    1 / -0

    $$P (1,1,1 )$$ and $$Q(\lambda, \lambda, \lambda)$$ are two points in the space such that $$PQ=\sqrt{27}$$, then the value(s) of $$\lambda $$ can be
    Solution
    The square of the distance between the $$2$$ points is $$ {3\times{(\lambda - 1)}^{2}} $$
    This has to be equal to $$27$$.
    Hence, $$ \lambda - 1 $$ $$= 3,-3$$
    $$ \lambda = -2,4 $$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now