Self Studies

Introduction to...

TIME LEFT -
  • Question 1
    1 / -0

    The value(s) of $$\lambda $$, for which the triangle with vertices $$(6,10,10),(1,0,-5)$$ and $$(6,-10,\lambda)$$ will be a right angled triangle is/ are

  • Question 2
    1 / -0

    $$P(0,5,6),Q(1,4,7),R(2,3,7)$$ and $$S(3,5,16)$$ are four points in the space. The point nearest to the origin $$O(0,0,0)$$ is

  • Question 3
    1 / -0

    If $$A(\cos\alpha,\sin\alpha, 0),B(\cos\beta,\sin\beta, 0)$$, $$C(\cos\gamma,\sin\gamma,0)$$ are vertices of $$\Delta ABC$$ and let 

    $$\cos \alpha+\cos\beta+\cos\gamma=3{a}$$, $$\sin\alpha+\sin\beta+\sin\gamma =3b$$, then correct matching of the following is:
    List : I
    List : II
    A. Circumcentre
    $$1. (3a,3b,0)$$
    B. Centroid
    $$2. (0,0,0)$$
    C. Ortho centre
    $$3. (a,b,0)$$

  • Question 4
    1 / -0

    Arrange the points: $$\mathrm{A}(1,2-3), \mathrm{B}(-1,2,-3), \mathrm{C}(-1,-2-3)$$ and $$\mathrm{D}(1,-2, -3)$$ in the increasing order of their octant numbers:

  • Question 5
    1 / -0

    In the $$\Delta ABC$$, if $$AB=\sqrt{2}; AC=\sqrt{20}, B=(3,2,0)$$ and $$C=(0,1,4)$$, then the length of the median passing through $$A$$ is

  • Question 6
    1 / -0

    The extremities of a diagonal of a rectangular parallelopiped whose faces are parallel to the reference planes are $$(-2, 4, 6)$$ and $$(3, 16, 6)$$. The length of the base diagonal is

  • Question 7
    1 / -0

    Assertion (A): The points $$A(2,9,12) ,B(1,8,8) ,C(2,11,8) D(1,12,12)$$ are the vertices of a rhombus
    Reason (R): $$AB = BC = CD = DA$$ and $$AC = BD$$

  • Question 8
    1 / -0

    If the plane a  $$2x-3y+5_{Z}-2=0$$ divides the line segment joining $$(1, 2, 3)$$ and $$(2, 1, k)$$ in the ratio $$9 : 11$$, then $$k$$ is

  • Question 9
    1 / -0

    The point equidistant from the points $$(0,0,0), (1,0,0), (0,2,0)$$ and $$(0,0,3)$$ is

  • Question 10
    1 / -0

    Assertion(A): If centroid and circumcentre of a triangle are known its orthocentre can be found.
    Reason (R) : Centriod, orthocentre and circumcentre of a triangle are collinear

Submit Test
Self Studies
User
Question Analysis
  • Answered - 0

  • Unanswered - 10

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
Submit Test
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now