Self Studies

Introduction to Three Dimensional Geometry Test - 20

Result Self Studies

Introduction to Three Dimensional Geometry Test - 20
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The plane $$ax+by + cz + d = 0$$ divides the line joining $$(x_1, y_1, z_1)$$ and $$(x_2, y_2, z_2)$$ in the ratio
    Solution

    Let the plane $$ax+by + cz + d =0$$ divides the lines joining $$(x_1, y_1, z_1)$$ and $$(x_2, y_2, z_2)$$ in the ratio $$k:1$$ as shown in figure.

    $$\therefore $$Coordinates of $$\displaystyle P \left ( \dfrac{kx_2 + x_1}{k + 1}, \dfrac{ky_2 + y_1}{k+1}, \dfrac{kz_2 + z_1}{k+1} \right )$$ must satisfy $$ax + by + ca + d = 0$$

    i.e., $$\displaystyle \left ( a \dfrac{kx_2 + x_1}{k + 1} \right ) + b\left ( \dfrac{ky_2 + y_1}{k + 1} \right) + c \left ( \dfrac{kz_2 + z_1}{k + 1} \right) + d = 0$$

    $$\Rightarrow a(kx_2 + x_1) + b (ky_2 + y_1) + c (kz_2 + z_1) + c(kz_2 + z_1) + d (k + 1)= 0$$

    $$\Rightarrow k (ax_2 + by_2 + cz_2 + d) + (ax_1 + by_1 + cz_1 + d)= 0$$

    $$\Rightarrow \displaystyle k = - \dfrac{(ax_1 + by_1 + cz_1 + d)}{(ax_2 + by_2 + cz_2 + d)}$$

    Hence, option A is correct.

  • Question 2
    1 / -0
    If the centroid of triangle whose vertices are $$(a, 1, 3), (-2, b, - 5)$$ and $$(4, 7, c)$$ be the origin, then the values of $$a, b$$ and $$c$$ are
    Solution
    Let $$P\left( { x }_{ 1 },{ y }_{ 1 } \right) ,Q\left( { x }_{ 2 },{ y }_{ 2 } \right) $$ and $$R\left( { x }_{ 3 },{ y }_{ 3 } \right) $$ be coordinates of triangle 
    Now the centroid of triangle is,
    $$\left( \cfrac { { x }_{ 1 }+{ x }_{ 2 }+{ x }_{ 3 } }{ 3 } ,\cfrac { { y }_{ 1 }+{ y }_{ 2 }+{ y }_{ 3 } }{ 3 }  \right) $$ 

    By using the formula of centroid of triangle,
    $$(0,0,0)\ {=}\ [(a-2+4)/3,(1+b+7)/3,(3-5+c)/3]$$
    $$(0,0,0)\ {=}\ [(a+2)/3,(b+8)/3,(c-2)/3]$$
    on solving, we get
    $$a\ {=}\ -2$$; $$b\ {=}\ -8$$; $$c\ {=}\ 2$$
  • Question 3
    1 / -0
    Find the ratio in which $$2x + 3y + 5z = 1$$ divides the line joining the points $$(1,\ 0,\ -3)$$ and $$(1,\ -5,\ 7)$$.
    Solution

    $$2x + 3y + 5z = 1$$ divides $$(1, 0, -3)$$ and $$(1, -5, 7)$$ in the ratio of $$k : 1$$ at point $$P$$.

    Then, $$\displaystyle P \left ( \displaystyle \dfrac{k + 1}{k + 1} , \displaystyle \dfrac{-5k}{k + 1}, \displaystyle \dfrac{7k - 3}{k + 1} \right )$$ which must satisfy $$2x + 3y + 5z = 1$$

    $$\Rightarrow 2 \left ( \displaystyle \dfrac{k + 1}{k + 1} \right ) + 3 \left ( \displaystyle \dfrac{-5k}{k + 1} \right ) + 5 \left (\displaystyle \dfrac{7k - 3}{k + 1} \right ) = 1$$

    $$\Rightarrow 2k + 2 - 15 k + 35 k - 15 = k + 1$$

    $$\Rightarrow                21 k = 14$$

    $$\Rightarrow                k = \displaystyle \dfrac{2}{3}$$

    $$\therefore 2x + 3y + 5z = 1$$ divides $$(1, 0, -3)$$ and $$(1, -5, 7)$$ in the ratio of $$2 : 3$$.

  • Question 4
    1 / -0
    If the sum of the squares of the distance of a point from the three coordinate axes be $$36$$, then its distance from the origin is
    Solution
    Let $$(x, y, z)$$ be the point.

    Given sum of the squares of distance from point to the axes is $$36$$. 

    $$ \Rightarrow (x^2+y^2) +(y^2+z^2) + (z^2+x^2) = 36 $$

    $$ \Rightarrow 2(x^2+y^2+z^2) = 36 \Rightarrow x^2 + y^2 + z^2 = 18  $$

    So the distance of the point from the origin is $$ = \sqrt{x^2 + y^2 + z^2} = 3\sqrt{2}$$

    Hence, option B; is correct.
  • Question 5
    1 / -0
    The circum radius of the triangle formed by the points $$(0, 0, 0)$$, $$(0, 0, 12)$$ and $$(3, 4, 0)$$ is
    Solution
    Center of the circum circle of a right angle triangle is on the mid of the hypotenuse. 
    Hence the radius is the half of the length of the hypotenuse.
    $$\dfrac{\sqrt{3^2+4^2+12^2}}{2}=\dfrac{13}{2}$$ 
  • Question 6
    1 / -0
    The coordinates of the point where the line segment joining $$A(5,1,6)$$ and $$B (3,4,1)$$ crosses the yz plane are
    Solution
    The direction ratios of line joining the points $$(5,1,6)$$ and $$(3,4,1)$$ are $$2,-3,5$$
    Therefore the equation of line is $$\frac { x-5 }{ 2 } =\frac { y-1 }{ -3 } =\frac { z-6 }{ 5 } $$
    Given that the line crosses $$yz$$ plane . In $$yz$$ plane, $$x=0$$
    $$\Rightarrow \frac { 0-5 }{ 2 } =\frac { y-1 }{ -3 } =\frac { z-6 }{ 5 } $$
    $$\Rightarrow y= \frac{17}{2} , z=-\frac{13}{2}$$
    Therefore the correct option is $$C$$
  • Question 7
    1 / -0
    Four vertices of a tetrahedron are $$(0, 0, 0), (4, 0, 0), (0, -8, 0)$$ and $$(0, 0, 12)$$. Its centroid has the coordinates
    Solution
    If the vertices of tetrahedron are,$$(x_1,y_1,z_1),(x_2,y_2,z_2),(x_3,y_3,z_3),(x_4,y_4,z_4)$$, then the centroid of tetrahedron is
    $$\left (\dfrac{x_1+x_2+x_3+x_4}{4},\dfrac{y_1+y_2+y_3+y_4}{4},\dfrac{z_1+z_2+z_3+z_4}{4}\right)$$
    Thus from the vertices given in the question, the centroid is
    $$=\left (\dfrac{4}{4},\dfrac{-8}{4},\dfrac{12}{4}\right)$$
    $$=(1,-2,3)$$
  • Question 8
    1 / -0
    If $$P= (0, 0, 0), Q = (3, 6, 9)$$ and $$R$$ is a point of trisection of $$PQ$$, then $$R_y=$$
    Solution
    If $$R$$ is a point of trisection of $$PQ$$, then it divides the line $$PQ$$ in the ratio of $$2:1$$ or $$1:2$$
    Case 1: $$R$$ divides $$PQ$$ in $$2:1$$ ratio,
    Then coordinates of $$R$$ are $$\left(\dfrac{2\times3+1\times0}{3}, \dfrac{2\times6+1\times0}{3}, \dfrac{2\times9+1\times0}{3}\right) = (2,4.6)$$
    Case 2: $$R$$ divides $$PQ$$ in $$1:2$$ ratio,
    Then coordinates of $$R$$ are $$\left(\dfrac{1\times3+2\times0}{3},

    \dfrac{1\times6+2\times0}{3}, \dfrac{1\times9+2\times0}{3}\right) = (1,2,3)$$
    $$\therefore R_y = 2$$ or $$4$$
    Hence, option B is correct.
  • Question 9
    1 / -0
    If the plane $$7x + 11y+ 13z= 3003$$ meets the axes in $$A, B, C$$, then the centroid of $$\Delta ABC$$ is
    Solution
    intercept form $$\dfrac{7x}{3003}+\dfrac{11y}{3003}+\dfrac{13z}{3003}=1$$

    $$\therefore A[429,0,0], B[0,273,0], C[0,0,231]$$ are the vertices of triangle ABC.

    then centroid is $$(\dfrac{429+0+0}{3}+\dfrac{273}{3}+\dfrac{237}{3})$$ 
    $$\Longrightarrow (143,91,77)$$
  • Question 10
    1 / -0
    Three vertices of a tetrahedron are $$(0, 0, 0), (6, -5, -1) $$ and $$(-4, 1, 3)$$. If the centroid of the tetrahedron be $$(1, -2, 5) $$ then the fourth vertex is
    Solution
    if the fourth vertex is $$(x_1,y_1,z_1)$$
    Then $$0+6-4+x_1=0, \therefore x_1=2$$
    similarily $$0-5+1+y_1=0 \therefore y_1=-4$$
    $$0-1+3+z_1=20$$
    $$\therefore z_1=18$$
    $$\therefore$$ the fourth vertex is $$(2,-4,18)$$

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now