Self Studies

Introduction to Three Dimensional Geometry Test - 21

Result Self Studies

Introduction to Three Dimensional Geometry Test - 21
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    A $$= (1, 1, 4)$$ and B $$= (5,-3, 4)$$ are two points. If the points $$P$$, $$Q$$ are on the line AB such that AP $$=$$ PQ $$=$$ QB then PQ $$=$$
    Solution
    $$AB=\sqrt {(1-5)^2+(1+3)^2+(4-4)^2}$$
    $$AB = \sqrt {(-4)^2+4^2}$$
    $$AB = \sqrt {32}$$

    Given that $$AP=PQ=QB$$
    But, $$AB=AP+PQ+QB$$
    Hence, $$AB=3 \times PQ$$
    So, $$PQ = \cfrac {\sqrt {32}}{3} = \sqrt {\cfrac {32}{9}}$$
  • Question 2
    1 / -0
    If P $$(3, 2, -4)$$ , Q $$(5, 4, -6)$$ and R $$(9, 8, -10)$$ are collinear, then R divides PQ in the ratio
    Solution
    Let R divides PQ in ratio m:n.
    By Section Formula 
    coordinates of R are:
    $$R=(\dfrac{5m+3n}{m+n},\dfrac{4m+2n}{m+n},\dfrac{-6m-4n}{m+n})$$

    we have coordinates of R=(9,8,-10)
    Therefore,
    $$9=\dfrac{5m+3n}{m+n}$$
    $$9m+9n=5m+3n$$
    $$-6n=4m$$
    $$\dfrac{m}{n}=\dfrac{-3}{2}$$
    Therefore R divides PQ in 3:2 ratio and negative sign indicates,it cuts Externally.
    Therefore option (B) is Correct.
  • Question 3
    1 / -0
    The distance from the origin to the centroid of the tetrahedron formed by the points $$(0, 0, 0), (3, 0, 0), (0, 4, 0), (0, 0, 5)$$ is 
    Solution
    $$G=(\dfrac{a}{4},\cfrac{b}{4},\cfrac{c}{4})$$
    $$\therefore OG=\sqrt{(\cfrac{a^2}{16}+\cfrac{b^2}{16}+\cfrac{c^2}{16})}$$
    Thus, here $$a=3,b=4,c=5$$
    substituting in above equation we get 
    $$OG=\sqrt{\cfrac{3^2+4^2+5^2}{4}}$$
  • Question 4
    1 / -0
    The position vectors of the four angular point of a tetrahedron $$OABC$$ are $$(0, 0, 0)$$; $$(0, 0, 2)$$; $$(0, 4, 0)$$ and $$(6, 0, 0)$$ respectively. Find the coordinates of cenroid
    Solution
    Angular points of tetrahedron OABC are $$(0,0,0),(0,0,2),(0,4,0),(6,0,0)$$
    To find the coordinates of the centroid of the tetrahedron whose vertices are $$(x_1, y_1, z_1 ), (x_2, y_2, z_2 ), (x_3, y_3, z_3 )$$ and $$(x_4 , y_4 , z_4 ).$$
    Hence, the centroid is
    $$(\cfrac{x_1+x_2+x_3+x_4}{4}),(\cfrac{y_1+y_2+y_3+y_4}{4}),(\cfrac{z_1+z_2+z_3+z_4}{4})$$
    Now, substituting the values we get 
    $$(\cfrac{0+0+0+6}{4}),(\cfrac{0+0+4+0}{4}),(\cfrac{0+2+0+0}{4})$$
    $$\therefore $$ the coordinates of the centroid are : $$(\cfrac{6}{4},1,\cfrac{2}{4})$$
  • Question 5
    1 / -0
    Let $$A= \left ( 1,2,3 \right )B= \left ( -1,-2,-1 \right )C= \left ( 2,3,2 \right )$$ and $$ D= \left ( 4,7,6 \right )$$. Then $$ABCD$$ is a
    Solution
    AB$${=}$$ $$\sqrt{{(-1-1)}^{2}+{(-2-2)}^{2}+{(-1-3)}^{2}}$$
    AB$${=}$$ $$\sqrt{{(-2)}^{2}+{(-4)}^{2}+{(-4)}^{2}}$$
    AB$${=}$$ $$\sqrt{36}$$
    AB$${=}$$ 6
    Similarly you find that BC$${=}$$ $$\sqrt{43}$$  CD$${=}$$ 6  and DA$${=}$$ $$\sqrt{43}$$
    Hence opposite sides of quadrilateral are equal, Now we check the diagonals
    AC$${=}$$ $$\sqrt{{(2-1)}^{2}+{(3-2)}^{2}+{(2-3)}^{2}}$$
    AC$${=}$$ $$\sqrt{3}$$
    similarly BD$${=}$$ $$\sqrt{155}$$ 
    Diagonals are not equal
    direction ratio of line passing through AB is (-2,-4,-4)
    direction ratio of line passing through  CD is (2,4,4), As the dr of AB and CD are proportional which means AB is parallel to CD,
    Similarly check for BC and DA then you will find that they are also parallel
    hence it is parallelogram
  • Question 6
    1 / -0
    If $$A= \left ( 5,-1,1 \right ),B= \left ( 7,-4,7 \right ),C= \left ( 1,-6,10 \right ),D= \left ( -1,-3,4 \right )$$. Then $$ABCD$$ is a
    Solution
    AB$${=}$$ $$\sqrt{{(7-5)}^{2}+{(-4+1)}^{2}+{(7-1)}^{2}}$$
    AB$${=}$$ $$\sqrt{{(2)}^{2}+{(-3)}^{2}+{(6)}^{2}}$$
    AB$${=}$$ $$\sqrt{49}$$
    AB$${=}$$ 7
    Similarly you find that BC$${=}$$ $$\sqrt{49}$$  CD$${=}$$ 7  and DA$${=}$$7
    Hence all sides of quadrilateral are equal, Now we check the diagonals
    AC$${=}$$ $$\sqrt{{(1-5)}^{2}+{(-6+1)}^{2}+{(10-1)}^{2}}$$
    AC$${=}$$ $$\sqrt{122}$$
    similarly BD$${=}$$ $$\sqrt{74}$$ 
    Diagonals are not equal
    direction ratio of line passing through AC is (-4,-5,9)
    direction ratio of line passing through  BD is (-8,1,-3), As the dot product dr of AC and BD are equal to 0 which means AC is perpendicular to BD,
    All sides are equal and diagonal are not equal but bisect each other at right angle
    hence it is rhombus
  • Question 7
    1 / -0
    The equation of the plane which is parallel to the $$xy-$$plane is
    Solution
    The equation of a plane which is parallel to the $$xy-$$ plane is
    $$z=c$$

  • Question 8
    1 / -0
    The distance of the point $$(1,-2,3)$$ from  the plane $$x-y+z=5$$ measured parallel to the line $$\displaystyle \frac{x}{2}=\displaystyle \frac{y}{3}=\displaystyle \frac{z}{-6}$$ is
    Solution
    Equation of the line through $$(1,-2,3)$$ parallel to the line $$\displaystyle \frac { x }{ 2 } =\frac { y }{ 3 } =\frac { z}{ -6 } $$ is
    $$\displaystyle \frac { x-1 }{ 2 } =\frac { y+2 }{ 3 } =\frac { z-3 }{ -6 } =r$$ (say)   ...(1)
    Then any point on (1) is $$(2r+1,3r-2,-6r+3)$$
    If this point lies on the plane $$x-y+z=5$$ then $$(2r+1)-(3r-2)+(-6r+3)=5$$
    $$\displaystyle \Rightarrow -7r+6=5\Rightarrow r=\frac { 1 }{ 7 } $$
    Hence, the point is $$\displaystyle \left( \frac { 9 }{ 7 } ,\frac { -11 }{ 7 } ,\frac { 15 }{ 7 }  \right) $$
    Distance between $$(1,-2,3)$$ and $$\displaystyle \left( \frac { 9 }{ 7 } ,\frac { -11 }{ 7 } ,\frac { 15 }{ 7 }  \right) $$ 
    $$\displaystyle =\sqrt { \frac { 4 }{ 49 } +\frac { 9 }{ 49 } +\frac { 36 }{ 49 }  } =\sqrt { \frac { 49 }{ 49 }  } =1$$
  • Question 9
    1 / -0
    If  $$C_1:{x^2+y^2}-20x+64=0$$ and $$C_2:{x^2+y^2}+30x+144=0$$. Then the length of the shortest line segment $$PQ$$  which touches $$C_1$$ at $$P$$ and  to  $$C_2$$ at $$Q$$ is
    Solution
    Given $$C_1 : x^2+y^2-20x+64=0 \Rightarrow (x-10)^2+y^2=36$$
    and $$C_2 : x^2+y^2+30x+144=0 \Rightarrow (x+15)^2+y^2=81$$
    So centre and radius of $$C_1$$ and $$C_2$$ are $$(10,0)$$, $$(-15,0)$$ and $$6,9$$ respectively.
    Then, distance between $$C_1$$ and $$C_2$$ is $$\sqrt{(15+10)^{2}+(0-0)^{2}}=25$$. 
    $$PQ$$ touches $$C_{1}$$ at $$P$$ and $$C_{2}$$ at $$Q$$.
    Then, shortest length of $$PQ$$ is $$=25-(9+6)=25-15=10$$
  • Question 10
    1 / -0
    The plane $$XOZ$$ divides the join of $$(1,-1,5)$$ and $$(2,3,4)$$ in the ratio $$\lambda :1$$, then $$\lambda$$ is
    Solution
    $${\textbf{Step - 1: Using section formula.}}$$
                   $${\text{ Let given points (1,-1,5) and (2,3,4) be}}$$ $$(x_1,y_1,z_1)$$  $${\text{and}}$$ $$(x_2,y_2,z_2)$$ 
                    $${\text{The given ratios are}}$$ $$\lambda : 1$$ $${\text{be}}$$ $$m:n$$ 
                    $${\text{Section formula are:}}$$
                    $$\mathbf{\left( {\dfrac{{mx_2  + nx_1}}{{m + n}},\dfrac{{my_2 + ny_1}}{{m + n}},\dfrac{{mz_2 + nz_1}}{{m + n}}} \right)}$$
                    $$\text{putting values we get, } \left( {\dfrac{{2\lambda  + 1}}{{\lambda  + 1}},\dfrac{{3\lambda  - 1}}{{\lambda  + 1}},\dfrac{{4\lambda  + 5}}{{\lambda  + 1}}} \right)$$

    $${\textbf{Step - 2: Taking y co-ordinate equals to zero}}$$ 

                    $${\text{Since, this points lies in XOZ plane then its y co-ordinate should be zero}}$$ 

                    $$ \Rightarrow$$ $$\dfrac{{3\lambda  - 1}}{{\lambda  + 1}} = 0$$

                    $$ \Rightarrow$$ $${{3\lambda  - 1}}= 0$$

                    $$ \Rightarrow$$ $$3\lambda= 1$$

                    $$\Rightarrow$$ $$\lambda  = \dfrac{1}{3}$$

    $${\textbf{Hence, the correct option is (D)}}$$ $$\mathbf{\lambda  = \dfrac{1}{3}}$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now