Self Studies

Introduction to Three Dimensional Geometry Test - 28

Result Self Studies

Introduction to Three Dimensional Geometry Test - 28
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Plane $$ax + by + cz = 1$$ intersect axes in $$A, B, C$$ respectively. If $$G\left (\dfrac {1}{6}, -\dfrac {1}{3}, 1\right )$$ is a centroid of $$\triangle ABC$$ then $$a + b + 3c =$$ _________.
    Solution
    let $$A\left (\dfrac {1}{a}, 0, 0\right ) B\left (0, \dfrac {1}{b}, 0\right ) C\left (0, 0, \dfrac {1}{c}\right )$$
    $$centroid \Rightarrow \left (\dfrac {1}{3a}, \dfrac {1}{3b}, \dfrac {1}{3c}\right ) = \left (\dfrac {1}{6}, \dfrac {-1}{3}, 1\right )$$
    On comparing we get,
    $$ 3a=6 \Rightarrow a=2\\3b=-3\Rightarrow b=-1\\3c=1\Rightarrow c=\dfrac{1}{3}$$
    $$\therefore a = 2, b = -1, c = \dfrac{1}{3}$$
    $$\therefore a + b + 3c = 2$$
    Only (C) is correct.
  • Question 2
    1 / -0
    If $$xy-$$plane and $$yz-$$plane divides the line segment joining $$A(2,4,5)$$ and $$B(3,5,-4)$$ in the ratio $$a:b$$ and $$p:q$$ respectively then value of $$\left(\dfrac {a}{b}+\dfrac {p}{q}\right)$$ may be
    Solution
    Let the point on $$xy$$-plane which divide line AB in the ratio a:b be $$\left( {{x_1},{y_1},0} \right)$$ and the point on $$yz$$-plane which divide line AB in the ratio p:q be $$\left( {0,{y_2},{z_2}} \right)$$.
    Then $$\left( {{x_1},{y_1},0} \right) = \left( {\dfrac{{3a + 2b}}{{a + b}},\dfrac{{5a + 4b}}{{a + b}},\dfrac{{ - 4a + 5b}}{{a + b}}} \right)$$
    $$ \Rightarrow \dfrac{{ - 4a + 5b}}{{a + b}} = 0$$
    $$ \Rightarrow 4a = 5b$$
    $$ \Rightarrow \dfrac{a}{b} = \dfrac{5}{4}$$
    and  $$\left( {0,{y_2},{z_2}} \right) = \left( {\dfrac{{3p + 2q}}{{p + q}},\dfrac{{5p + 4q}}{{p + q}},\dfrac{{ - 4p + 5q}}{{p + q}}} \right)$$
    $$ \Rightarrow \dfrac{{3p + 2q}}{{p + q}} = 0$$
    $$ \Rightarrow 3p =  - 2q$$
    $$ \Rightarrow \dfrac{p}{q} = \dfrac{{ - 2}}{3}$$
    Now,  $$\dfrac{a}{b} + \dfrac{p}{q} = \dfrac{5}{4} - \dfrac{2}{3} = \dfrac{{15 - 8}}{{12}} = \dfrac{7}{{12}}$$
  • Question 3
    1 / -0
    Locus of a point $$P$$ which such that $$PA = PB$$ where $$A = (0, 3, 2)$$ and $$B = (2, 4, 1)$$ is
    Solution
    Let the co-ordinate of $$P$$ be $$(x,y,z)$$.
    Given the points $$A(0,3.2)$$ and $$B(2,4,1)$$.
    Given,
    $$PA=PB$$.
    or, $$\sqrt{x^2+(y-3)^2+(z-2)^2}=\sqrt{(x-2)^2+(y-4)^2+(z-1)^2}$$
    or, $$-6y+9-4z+4=-4x+4-8y+16-2z+1$$ [ Squaring and then eliminating the higher power of $$x,y,z$$]
    or,$$4x+2y-2z=8$$
    or, $$2x+y-z=4$$.
    So locus of $$P$$ is $$2x+y-z=4$$.
  • Question 4
    1 / -0
    Points $$(5, 0, 2), (2, -6, 0), (4, -9, 6)$$ & $$(7, -3, 8)$$ are vertices of a 
    Solution

    $$\textbf{Step -1: Find the distance between the given points.}$$

                    $$\text{Let }A(5,0,2),B(2,-6,0),C(4,-9,6)\text{ and }D(7,-3,8).$$

                    $$AB=\sqrt{(2-5)^2+(-6-0)^2+(0-2)^2}$$

                           $$=\sqrt{9+36+4}$$

                           $$=\sqrt{49}$$

                           $$=7$$

                    $$BC=\sqrt{(4-2)^2+(-9-(-6))^2+(6-0)^2}$$

                           $$=\sqrt{4+9+36}$$

                           $$=\sqrt{49}$$

                           $$=7$$

                    $$CD=\sqrt{(7-4)^2+(-3-(-9))^2+(8-6)^2}$$

                            $$=\sqrt{9+36+4}$$

                            $$=\sqrt{49}$$

                            $$=7$$

                    $$DA=\sqrt{(5-7)^2+(0-(-3))^2+(2-8)^2}$$

                           $$=\sqrt{4+9+36}$$

                           $$=\sqrt{49}$$

                           $$=7$$

                    $$AC=\sqrt{(4-5)^2+(-9-0)^2+(6-2)^2}$$

                           $$=\sqrt{1+81+16}$$

                           $$=\sqrt{98}$$

                    $$BD=\sqrt{(7-2)^2+(-3-(-6))^2+(8-0)^2}$$

                            $$=\sqrt{25+9+64}$$

                            $$=\sqrt{98}$$

    $$\textbf{Step -2: Find the correct option.}$$

                    $$\because AB=BC=CD=DA$$

                    $$\therefore\text{All sides are equal.}$$

                    $$\text{and }AC=BD$$

                    $$\text{They must be its diagonal and they are also equal.}$$

                    $$\text{So, the figure formed from the given vertices is a square.}$$

    $$\textbf{Hence , the correct option is A.}$$

  • Question 5
    1 / -0
    The values of a for which $$(8,-7,a),(5,2,4)$$ and $$(6,-1,2)$$ are collinear , is given by 
    Solution

  • Question 6
    1 / -0
    Given $$A(3, 2, -4), B(5, 4, -6)$$ & $$C(9, 8, -10)$$ are collinear. Ratio in which $$B$$ divides $$AC$$
    Solution
    Given  A $$(3,2,-4)$$
    B $$(5,4,-6)$$
    C $$(9,8,-10)$$

    Let the ratio be  $$\lambda :1$$

    $$ \therefore 5= \cfrac { (3\times 1)+(9\times \lambda ) }{ \lambda +1 } \\ $$

     $$\Rightarrow 5\lambda +5=3+9\lambda $$

     $$\Rightarrow 4\lambda =2$$

    $$\therefore \lambda =\cfrac { 1 }{ 2 } \\ \text{Hence the  } Ratio=\lambda :1$$

    $$ \quad \quad \quad  =1:2$$
  • Question 7
    1 / -0
    A cube of side 5 has one vertex at the point (1,0,-1), and the three edges from this vertex are, respectively, parallel to the negative x and y axes and positive  z-axis. Find the coordinates of the other vertices of the cube.
    Solution
    Consider the problem 
    Below, are four complete cube face on $$XZ-plane,\,(y=0)$$  

    Given point
    $$(1,0,-1)$$

    End of the edge parallel to negative $$x-axis$$ 
    $$(0,0-1)$$

    Origin 
    $$(0,0,0)$$

    End of the edge parallel to positive $$z-axis $$
    $$(1,0,0)$$

    And, below 
    Four point complete the opposite face of cube. 

    consider $$P$$, end of edge parallel to negative  $$y-axis $$
    $$(1,-1,-1)$$

    Edge from $$P$$ parallel to positive $$z-axis $$
    $$(0,-1,0)$$

    Edge from $$P$$ parallel to negative $$x-axis $$
    $$(0,-1,-1)$$

    And 
    $$(0,-1,0)$$
  • Question 8
    1 / -0
    If $$O=(0,0,0),OP=5$$ and the d.rs of OP are $$1,2,2$$ then $$P_x+P_y+P_z=$$
    Solution

  • Question 9
    1 / -0
    Find the co-ordinates of a point lying on the line $$\dfrac{x -2}{3} = \dfrac{y + 3}{4} = \dfrac{z - 1}{7}$$ which is at a distance $$10$$ units from $$(2, -3, 1)$$.
    Solution
    Given that the required point lies on the line $$\dfrac{x-2}{3}=\dfrac{y+3}{4}=\dfrac{z-1}{7}$$.

    The required point is at a distance of $$10$$ units from $$(2,-3,1)$$

    By option verification,

    (A) Substituting the point $$(32,37,71)$$ 

    $$\implies \dfrac{32-2}{3}=\dfrac{37+3}{4}=\dfrac{71-1}{7}$$

    $$\implies 10=10=10$$

    Therefore, distance is $$\sqrt{(32-2)^2+(37+3)^2+(71-1)^2} =86.02$$ units

    Hence, $$(32,37,71)$$ is not the required point.

    (B) Substituting the point $$(-28,-43,-69)$$ 

    $$\implies \dfrac{-28-2}{3}=\dfrac{-43+3}{4}=\dfrac{-69-1}{7}$$

    $$\implies -10=-10=-10$$

    Therefore, distance is $$\sqrt{(-28-2)^2+(-43+3)^2+(-69-1)^2} =86.02$$ units

    Hence, $$(-28,-43,-69)$$ is not the required point.

    (C) Substituting the point $$(-32,-37,-71)$$ 

    $$\implies \dfrac{-32-2}{3}=\dfrac{-37+3}{4}=\dfrac{-71-1}{7}$$

    $$\implies 11.3=11.3=10.28$$

    Therefore, distance is $$\sqrt{(-32-2)^2+(-37+3)^2+(-71-1)^2} =86.57$$ units

    Hence, $$(-32,-37,-71)$$ is not the required point.
  • Question 10
    1 / -0
    The ratio in which the join of $$(1, -2, 4)$$ and $$(4, 2, -1)$$ divided by the $$XY$$ plane is
    Solution
    Let $$P$$ be the point where the line joining the given two points $$(1,-2,4)$$ and $$(4,2,-1)$$ intersects the $$X-Y$$ plane in $$m:n$$ ratio. We are to find $$m:n$$.
    Now the co-ordinate of the point $$P$$ be $$\left(\dfrac{4m+n}{m+n},\dfrac{2m-2n}{m+n},\dfrac{-m+4n}{m+n}\right)$$.
    As the point $$P$$ lies on the $$X-Y$$ plane, 
    $$\dfrac{-m+4n}{m+n}=0$$
    or, $$-m+4n=0$$
    or, $$\dfrac{m}{n}=\dfrac{4}{1}$$
    or, $$m:n=4:1$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now