Self Studies

Introduction to Three Dimensional Geometry Test - 30

Result Self Studies

Introduction to Three Dimensional Geometry Test - 30
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If $$A(2, 2, -3), B(5, 6, 9), C(2, 7, 9)$$ be the vertices of a triangle. The internal bisector of the angle $$A$$ meets $$BC$$ at the point $$D$$, then find the coordinates of $$D$$.
    Solution

    We have,

    Point

    $$ A\left( {{x}_{1}},{{y}_{1}},{{z}_{1}} \right)=\left( 2,2,-3 \right) $$

    $$ B\left( {{x}_{2}},{{y}_{2}},{{z}_{2}} \right)=\left( 5,6,9 \right) $$

    $$ C\left( {{x}_{3}},{{y}_{3}},{{z}_{3}} \right)=\left( 2,7,9 \right) $$

    Let the coordinates of point $$D\left( x,y,z \right).$$

    So,

    According to question,

    $$ AB=\sqrt{{{\left( 5-2 \right)}^{2}}+{{\left( 6-2 \right)}^{2}}+{{\left( 9-3 \right)}^{2}}} $$

    $$ AB=\sqrt{9+16+149}=\sqrt{{{13}^{2}}}=13 $$

    $$ AC=\sqrt{{{\left( 2-2 \right)}^{2}}+{{\left( 7-2 \right)}^{2}}+{{\left( 9+3 \right)}^{2}}} $$

    $$ AC=\sqrt{0+25+144}=\sqrt{169}=13 $$

    Thus $$ABC$$ is isosceles triangle with $$AB=AC$$

    So, angle bisector $$AD$$ bisects $$BC$$

    $$D\equiv \left( \dfrac{5+2}{2},\dfrac{6+7}{2},\dfrac{9+9}{2} \right)\equiv \left( \dfrac{7}{2},\dfrac{13}{2},9 \right)$$

    Hence, this is the ansewr.
  • Question 2
    1 / -0
    If the lines $$\frac{x - 0}{1} =\frac{y+1}{2}=\frac{z-1}{-1}$$ and $$\frac{x+1}{k}=\frac{y-3}{-2}=\frac{z-2}{1}$$ are at right angles, then the value of k is
    Solution
    If $$({ l }_{ 1 }{ m }_{ 1 }{ n }_{ 1 })$$ and  $$({ l }_{ 2 }{ m }_{ 2 }{ n }_{ 2 })$$ are directions of two $$\bot$$ lines then,
    $${ l }_{ 1 }{ l }_{ 2 }+{ m }_{ 1 }{ m }_{ 2 }+n_{ 1 }{ n }_{ 2 }=0\\ k-4-1=0\\ k=5$$
  • Question 3
    1 / -0
    The graph of the equation $$y^{2}+z^{2}=0$$ in three dimensional space is
    Solution
    Consider the problem 

    $${y^2} + {z^2} = 0$$

    $$x=0$$ and $$z=0$$

    Therefore, 
    The graph of the equation 

    $${y^2} + {z^2} = 0$$ is $$x-axis$$.

    Hence, the correct option is $$x-axis$$.
  • Question 4
    1 / -0
    The area of triangle whose vertices are $$(1, 2, 3), (2, 5, -1)$$ and $$(-1, 1, 2)$$ is
    Solution
    Let the vertices of triangle are 

    $$A(1,2,3),B(2,5,-1)$$ and $$C(-1,1,2)$$ 

    Then, 

    $$\begin{array}{l} \overrightarrow { AB } =\overrightarrow { OB } -\overrightarrow { OA } =\hat { i } +3\hat { j } -4\hat { k }  \\  \\ \overrightarrow { AC } =\overrightarrow { OC } -\overrightarrow { OA } =-2\hat { i } -\hat { j } -\hat { k }  \end{array}$$

    Then, 

    $$\begin{array}{l} \overrightarrow { AB } \times \overrightarrow { AC } =\left| { \begin{array} { *{ 20 }{ c } }{ \hat { i }  } & { \hat { j }  } & { \hat { k }  } \\ 1 & 3 & { -4 } \\ { -2 } & { -1 } & { -1 } \end{array} } \right|  \\  \\ =-7\hat { i } +9\hat { j } +5\hat { k }  \\  \\ \left| { \overrightarrow { AB } \times \overrightarrow { AC }  } \right| =\sqrt { { { \left( { -7 } \right)  }^{ 2 } }+{ { \left( 9 \right)  }^{ 2 } }+{ { \left( 5 \right)  }^{ 2 } } }  \\  \\ =\sqrt { 49+8+25 }  \\  \\ =\sqrt { 155 }  \end{array}$$

    Area of triangle $$ABC=\frac{1}{2}|\vec {AB} \times \vec {AC}|$$

    $$=\frac{1}{2} \times \sqrt {155}$$

    $$=\frac{\sqrt {155}}{2}$$ sq. units 

  • Question 5
    1 / -0
    A tangent to the curve $$y = f(x)$$ at $$p(x, y)$$ meets $$x - axis$$ at $$A$$ and $$y-axis$$ at $$B$$. If $$\overline {AP} : \overline {BP} = 1 : 3$$ and $$f(1) = 1$$ then the curve also passes through the point.
    Solution
    $$\dfrac{(y - y_1)}{(x - x_1)} = f'(x_1)$$

    $$y - y_1 = f'(x_1)(x - x_1)$$

    $$y = 0, \dfrac{-y}{f'(x_1)} = x - x_1$$

    $$\Rightarrow x = x_1 = \dfrac{y_1}{f'(x_1)}$$

    $$A = \left(x_1 - \dfrac{y_1}{r'(x_1)}, 0\right)$$

    $$x = 0, y - y_1 = f'(x_1). (-x_1)$$

    $$\Rightarrow y = y_1 - x_1 f'(x_1)$$

    $$B = (0, y_1 - x_1 f'(x_1))$$

    P divides $$AB$$ in ration $$1 : 3$$

    $$x_1 = \dfrac{3\left[x_1 - \dfrac{y_1}{f'(x_1)} \right]}{4} , y_1 = \dfrac{[y_1 - x_1 f'(x_1)]}{4}$$

    $$4y_1 = y_1 x_1 f'(x_1)$$

    $$f'(x_1) = \dfrac{-3y_1}{x_1}$$

    $$f'(x) = \left(\dfrac{-3y}{x} \right)$$

    $$\dfrac{dy}{dx} = \dfrac{-3y}{x}$$

    $$\dfrac{dy}{y} = \dfrac{-3dx}{x}$$

    $$\ln y = -3 \ln x + c$$

    $$y = kx^{-3}$$

    $$y(1) = 1$$

    $$\Rightarrow k = 1 \Rightarrow y = \dfrac{1}{x^3} $$ put $$x = 2 , y = \dfrac{1}{8}  \left(2, \dfrac{1}{8} \right)$$
  • Question 6
    1 / -0
    If the distance between a point $$P$$ and the point $$(1, 1, 1)$$ on the line $$\dfrac {x - 1}{3} = \dfrac {y - 1}{4} = \dfrac {z - 1}{12}$$ is $$13$$, then the coordinates of $$P$$ are
    Solution
    Let the given points be $$A(1,1,1)$$
    Consider,
    $$\dfrac{{x - 1}}{3} = \dfrac{{y - 1}}{4} = \dfrac{{z - 1}}{{12}} = \lambda $$

    $$\begin{array}{l} x=3\lambda +1 \\  \\ y=4\lambda + 1\\  \\ z=12\lambda +1 \end{array}$$

    General point on the line is 
    $$3\lambda  + 1,\,4\lambda  + 1,\,12\lambda  + 1$$

    Given that,
    $$AP=13$$ 

    $$\sqrt {{{\left( {3\lambda  + 1 - 1} \right)}^2} + {{\left( {\,4\lambda  + 1 - 1} \right)}^2} + {{\left( {12\lambda  + 1 - 1} \right)}^2}}  = 13$$

    $$13\lambda =13$$

    $$\lambda =1$$

    $$\begin{array}{l} 3\lambda +1=4 \\  \\ 4\lambda +1=5 \\  \\ 12\lambda +1=13 \end{array}$$

    Therefore, required point $$P$$ is $$(4,5,13)$$.
    Hence the correct option is $$C$$.
  • Question 7
    1 / -0
    The values of a for which $$(8, -7, a), (5, 2, 4)$$ and $$(6, -1, 2)$$ are collinear, is given by?
    Solution
    $$\begin{matrix} then\, a=? \\ The\, equation\, lineAB\, is\,  \\ \Rightarrow \dfrac { { x-8 } }{ { 5-8 } } =\dfrac { { y+7 } }{ { 2+7 } } =\dfrac { { z-a } }{ { 4-a } } ....\left( 1 \right)  \\ po{ int }\, c\, lies\, in\, the\, line\, AB \\ po{ int }\left( { 6,-1,2 } \right) satisfy\, eq\left( 1 \right)  \\ \Rightarrow \dfrac { { -2 } }{ { -3 } } =\dfrac { { -1+7 } }{ 9 } =\dfrac { { 2-a } }{ { 4-a } }  \\ \Rightarrow \dfrac { 2 }{ 3 } =\dfrac { { 2-a } }{ { 4-a } }  \\ \Rightarrow 8-2a=6-3a \\ \Rightarrow 3a-2a=6-8 \\ a=-2 \\  \end{matrix}$$
  • Question 8
    1 / -0
    The vertices of a triangle are $$)2, 3, 5), (-1, 3, 2), (3, 5, -2)$$, then the angles are 
    Solution
    $$\overrightarrow { AB } =-3\hat { i } -3\hat { k } \\ \overrightarrow { BC } =4\hat { i } +2\hat { j } -4\hat { k } \\ \overrightarrow { CA } =-\hat { i } -2\hat { j } +7\hat { k } \\ \cos { A } =\cfrac { \left| \overrightarrow { AB } .\overrightarrow { CA }  \right|  }{ \left| \overrightarrow { AB }  \right| .\left| \overrightarrow { CA }  \right|  } =\cfrac { 1 }{ \sqrt { 3 }  } \\ \Rightarrow A=\cos ^{ -1 }{ (\cfrac { 1 }{ \sqrt { 3 }  } ) } \\ \cos { B } =\cfrac { \left| \overrightarrow { AB } .\overrightarrow { BC }  \right|  }{ \left| \overrightarrow { AB }  \right| .\left| \overrightarrow { BC }  \right|  } =0\\ \Rightarrow B={ 90 }^{ \circ  }\\ \cos { C } =\cfrac { \left| \overrightarrow { CA } .\overrightarrow { BC }  \right|  }{ \left| \overrightarrow { CA }  \right| .\left| \overrightarrow { BC }  \right|  } =\cfrac { \sqrt { 2 }  }{ \sqrt { 3 }  } \\ \Rightarrow C=\cos ^{ -1 }{ (\cfrac { \sqrt { 2 }  }{ \sqrt { 3 }  } ) } $$

  • Question 9
    1 / -0
    The ratio in which the line joining points $$(2,4,5)$$ and $$(3,5,-4)$$ divide YZ -plane is 
    Solution


    Let the ratio be $$\lambda:1$$
    The dividing plane is $$YZ$$ plane.
    So, the co-ordinate of $$x$$ after dividing the line $$= 0$$
    Now According to internal division rule of line segment 
    $$x=\dfrac{3\times \lambda - 1\times 2}{\lambda + 1}$$
    $$\Rightarrow \dfrac{3\lambda - 2}{\lambda + 1}=0$$
    $$\Rightarrow 3\lambda - 2=0 \ \Rightarrow \lambda=\dfrac{2}{3}$$.
    So. Ratio $$=2:3$$ 


































  • Question 10
    1 / -0
    The points $$(10,7,0)$$, $$(6,6-1)$$ and $$(6,9,-4)$$ form a 
    Solution
    $$P(10, 7, 0),\ Q(6, 6, -1),\ R(6, 9, -4)$$
    $$PQ=\sqrt {4^2+(-1)^2 +(-1)^2}$$
    $$=\sqrt {16+1+1}=3\sqrt 3$$
    $$QR=\sqrt {0^2+3^2+-3^2}$$
    $$PR=\sqrt {4^2+2^2+(-4)^2}$$
    $$=\sqrt {16+4+16}=6$$
    $$PQ^2+QR^2=(3\sqrt 2)^2+(3\sqrt 2)^2=6^2=PR^2$$
    $$\therefore \ \triangle PQR$$ is a right angle $$D$$ of $$Q,\ PQ=QR$$
    $$\triangle PQR$$ is a isoscels traingle
    $$(C)$$ Both $$(1)$$ & $$(2)$$

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now