Self Studies

Introduction to Three Dimensional Geometry Test - 31

Result Self Studies

Introduction to Three Dimensional Geometry Test - 31
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The ratio in which the line joining $$(3,4,-7)$$ and $$(4,2,1)$$ is dividing the xy-plane
    Solution
    Let the given points be 

    $$A(3,4,-7),\,B(4,2,1)$$

    Let a point on $$XY-plane $$ be $$P(x,y,0)$$ and the line $$AB$$ in the ratio $$k:1$$

    then by section formula 

    $$0=\dfrac{k \times 1+1 \times -7}{k+1}$$

    $$k-7 =0$$

    $$k=7$$

    Therefore, ratio is $$7:1$$

    Hence, option $$C$$ is correct.
  • Question 2
    1 / -0
    The shortest distance of the point $$(1,2,3)$$ from $${x}^{2}+{y}^{2}=0$$ is 
    Solution
    $${x}^{2}+{y}^{2}=0$$
    $$\therefore$$ $$(x,y)\equiv (0,0)$$
    Let  point be $$\equiv (0,0,z)$$
    $$d\equiv \sqrt { { (1-0) }^{ 2 }+{ (2-0) }^{ 2 }+{ (z-3) }^{ 2 } } =\sqrt { 1+4+{ (z-3) }^{ 2 } } \Rightarrow { (z-3) }^{ 2 }\ge 0$$
    $${ d }_{ min }=\sqrt { 5 } $$
  • Question 3
    1 / -0
    A triangle $$ABC$$ is placed so that the mid-points of the sides are on the $$x,y,z$$ axes. Lengths of the intercepts made by the plane containing the triangle on these axes are respectively $$\alpha, \beta, \gamma$$. Coordinates of the centroid of the triangle $$ABC$$ are
    Solution
    $$\triangle ABC$$ has $$P$$ as mid-point of $$AB$$ on x-axis.
    $$Q$$ as midpoint of $$BC$$ on y-axis.
    $$R$$ as midpoint of $$AC$$ on z-axis.
    $$\therefore A=({ x }_{ 1 }{ y }_{ 1 }{ z }_{ 1 })$$
    $$\therefore B=({ x }_{ 2 }{ y }_{ 2 }{ z }_{ 2 })$$
    $$\therefore C=({ x }_{ 3 }{ y }_{ 3 }{ z }_{ 3 })$$
    $$\Rightarrow P=(\cfrac { { x }_{ 1 }+{ x }_{ 2 } }{ 2 } ,\cfrac { { y }_{ 1 }+{ y }_{ 2 } }{ 2 } ,\cfrac { { z }_{ 1 }+{ z }_{ 2 } }{ 2 } )\\ Q=(\cfrac { { x }_{ 2 }+{ x }_{ 3 } }{ 2 } ,\cfrac { { y }_{ 2 }+{ y }_{ 3 } }{ 2 } ,\cfrac { { z }_{ 2 }+{ z }_{ 3 } }{ 2 } )\\ R=(\cfrac { { x }_{ 3 }+{ x }_{ 1 } }{ 2 } ,\cfrac { { y }_{ 3 }+{ y }_{ 1 } }{ 2 } ,\cfrac { { z }_{ 3 }+{ z }_{ 1 } }{ 2 } )\\ P=(\alpha ,0,0)\\ Q=(0,\beta ,0)\\ R=(0,0,\gamma )\\ \therefore \cfrac { { x }_{ 1 }+{ x }_{ 2 } }{ 2 } =\alpha \quad ,\quad \cfrac { { y }_{ 1 }+{ y }_{ 2 } }{ 2 } =0\quad ,\quad \cfrac { { z }_{ 1 }+{ z }_{ 2 } }{ 2 } =0\\ \cfrac { { x }_{ 2 }+{ x }_{ 3 } }{ 2 } =0\quad ,\quad \cfrac { { y }_{ 2 }+{ y }_{ 3 } }{ 2 } =\beta \quad ,\quad \cfrac { { z }_{ 2 }+{ z }_{ 3 } }{ 2 } =0\\ \cfrac { { x }_{ 3 }+{ x }_{ 1 } }{ 2 } =0\quad ,\quad \cfrac { { y }_{ 3 }+{ y }_{ 1 } }{ 2 } =0\quad ,\quad \cfrac { { z }_{ 3 }+{ z }_{ 1 } }{ 2 } =\gamma \\ \therefore { x }_{ 1 }+{ x }_{ 2 }+{ x }_{ 3 }=\alpha ,\quad { y }_{ 1 }+{ y }_{ 2 }+{ y }_{ 3 }=\beta ,\quad { z }_{ 1 }+{ z }_{ 2 }+{ z }_{ 3 }=\gamma $$
    $$ \therefore$$ centroid $$ (G)=(\cfrac { { x }_{ 1 }+{ x }_{ 2 }+{ x }_{ 3 } }{ 3 } ,\cfrac { { y }_{ 1 }+{ y }_{ 2 }+{ y }_{ 3 } }{ 3 } ,\cfrac { { z }_{ 1 }+{ z }_{ 2 }+{ z }_{ 3 } }{ 3 } )\\ =(\cfrac { \alpha  }{ 3 } ,\cfrac { \beta  }{ 3 } ,\cfrac { \gamma  }{ 3 } )$$

  • Question 4
    1 / -0
    The distance between two points $$(1,1)$$ and $$\left( {\dfrac{{2{t^2}}}{{1 + {t^2}}},\dfrac{{{{\left( {1 - t} \right)}^2}}}{{1 + {t^2}}}} \right)$$ is 
    Solution
    Two point are $$A(1,1)$$ and $$B\left(\dfrac{2t^{2}}{1+t^{2}}, \dfrac{(1+t)^{2}}{1+t^{1}}\right)$$

    $$AB=\sqrt{\left(1-\dfrac{2t^{2}}{1+t^{2}}\right)^{2}+\left(1-\dfrac{(1-t^{2})}{1+t^{2}}\right)^{2}}$$

    $$=\sqrt{\left(\dfrac{1+t^{2}-2t^{2}}{1+t^{2}}\right)^{2}+\left(\dfrac{1+t^{2}-1-t^{2}+2t}{1+t^{2}}\right)^{2}}$$

    $$=\sqrt{\left(\dfrac{1-t^{2}}{1+t^{2}}\right)^{2}+\left(\dfrac{RT}{1+t^{2}}\right)^{2}}$$

    $$=\sqrt{\dfrac{1+t^{4}-2t^{2}+4t^{2}}{(1+t^{2})^{2}}}$$

    $$=\sqrt{\dfrac{(1+t^{2})^{2}}{(1+t^{2})^{2}}}$$

    $$=1$$

  • Question 5
    1 / -0
    The points (-5,12), (-2,-3),(9,-10),(6,5) taken in order, form
    Solution
    Given points $$A(-5, 12)\quad B(-2, -3), C(9, -10), D(6, 5)$$

    Distance $$AB=\sqrt{(-5+2)^2+(12+3)^2}=\sqrt{9+225}=\sqrt{234}$$
    Distance $$BC=\sqrt{(-2-9)^2+(-3+10)^2}=\sqrt{121+49}=\sqrt{170}$$

    Distance $$CD=\sqrt{(9-6)^2+(-10-5)^2}=\sqrt{9+225}=\sqrt{234}$$
    Distance $$AD=\sqrt{(-5-6)^2+(12-5)^2}=\sqrt{121+49}=\sqrt{170}$$

    Distance $$AC=\sqrt{(-5-9)^2+(12+10)^2}=\sqrt{196+484}=\sqrt{680}$$
    Distance $$BD=\sqrt{(-2-6)^2+(-3-5)^2}=\sqrt{64+64}=\sqrt{128}$$

    These points forms a parallelogram, opposite pair of sides are equal and adjacent sides do not form right angles.
  • Question 6
    1 / -0
    The plane $$x = 0$$ divides the joinning of $$( - 2, 3, 4)$$ and $$(1, - 2, 3)$$ in the ratio :
    Solution
    R.E.F image 

    Given:
    place : $$ x = 0 $$ and two points $$ \rightarrow (-2,3,4) $$ and $$(1,-2,3) $$

    let say a point $$(x,y,z) $$ in $$ x = 0 $$ place

    So, $$ x = \dfrac{m+n(-2)}{m+n } = \dfrac{m-2n}{m+n} $$

    $$ 0 = \dfrac{m-2n}{m+n}\Rightarrow m = 2n $$

    So, $$ \dfrac{m}{n} = \dfrac{2}{1}\Rightarrow 2:1 $$ option -A 
  • Question 7
    1 / -0
    The nearest point  from the origin is 
    Solution
    Distance from the origin$$=\sqrt{{x}^{2}+{y}^{2}+{z}^{2}}$$

    Distance from $$\left(2,3,-1\right)$$ is $$\sqrt{{2}^{2}+{3}^{2}+{\left(-1\right)}^{2}}=\sqrt{4+9+1}=\sqrt{14}$$

    Distance from $$\left(-3,2,1\right)$$ is $$\sqrt{{\left(-3\right)}^{2}+{2}^{2}+{1}^{2}}=\sqrt{9+4+1}=\sqrt{14}$$

    Distance from $$\left(2,2,2\right)$$ is $$\sqrt{{2}^{2}+{2}^{2}+{2}^{2}}=\sqrt{8}$$

    Distance from $$\left(1,2,-1\right)$$ is $$\sqrt{{1}^{2}+{2}^{2}+{\left(-1\right)}^{2}}=\sqrt{1+4+1}=\sqrt{6}$$

    $$\sqrt{6}<\sqrt{8}<\sqrt{14}$$

    Thus $$\left(1,2,-1\right)$$ is nearest point from the origin.
  • Question 8
    1 / -0
    The vertices of a triangle are $$(2, 3, 5), (-1, 3, 2), (3, 5, -2)$$, then the angles are
    Solution
    Given vertices: $$A(2,3,5);B(-1,3,2);C(3,5,-2)$$
    $$AB=\sqrt { 9+0+9 } =3\sqrt { 2 } $$
    $$BC=\sqrt { 16+4+16 } =6$$
    $$AC=\sqrt { 1+4+49 } =3\sqrt { 6 } $$
    $$\cos { A } =\cfrac { { CA }^{ 2 }+{ BA }^{ 2 }-{ BC }^{ 2 } }{ 2CA\times BA } =\cfrac { 18+54-36 }{ 2\times 3\sqrt { 2 } \times 3\sqrt { 6 }  } =\cfrac { 36 }{ 18\times 2\sqrt { 3 }  } =\cfrac { 1 }{ \sqrt { 3 }  } $$
    $$\cos { B } =\cfrac { { AB }^{ 2 }+{ BC }^{ 2 }-{ AC }^{ 2 } }{ 2AB\times BC } =\cfrac { 18+36-54 }{ 2.3\sqrt { 2 } \times 6 } =0$$
    $$\cos { C } =\cfrac { 54+36-18 }{ 2\times 3\sqrt { 6 } \times 6 } =\cfrac { 72 }{ 36\sqrt { 6 }  } =\cfrac { 2 }{ \sqrt { 6 }  } =\sqrt { \cfrac { 2 }{ 3 }  } $$
    $$\therefore A=\cos ^{ -1 }{ \left( \cfrac { 1 }{ \sqrt { 3 }  }  \right)  } ;B=90°;C=\cos ^{ -1 }{ \left( \sqrt { \cfrac { 2 }{ 3 }  }  \right)  } $$

  • Question 9
    1 / -0
    The plane passing through the point $$\left(-2,-2,2\right)$$ and containing the line joining the points $$\left(1,1,1\right)$$ and $$\left(1,-1,2\right)$$ makes intercepts on the coordinates axes, the sum whose lengths is ?
    Solution

  • Question 10
    1 / -0
    The points $$(3,\ 2,\ 0),\ (5,\ 3,\ 2)$$ and $$(-9,\ 6,\ -3)$$, are the vertices of a triangle $$ABC.AD$$ is the internal bisector of $$\angle\ BAC$$ which meets $$BC$$ at $$D$$. Then the co-ordinates of $$D$$, are
    Solution
    $$AD$$ is bisector of $$ \angle BAC $$ 

    $$ \Rightarrow $$ Ratio at $$D$$ is $$ c:b$$ where 

    $$ c = AB = \sqrt{(3-5)^{2}+(2-3)+(0-2)^{2}} $$

    $$ = \sqrt{4+1+4} = \sqrt{9} = 3 $$

    $$ b = AC = \sqrt{(3+9)^{2}+(2-6)^{2}+(0+3)^{2}} $$

    $$ = \sqrt{144+16+9} = \sqrt{169} = 13 $$

    for point $$D$$ 

    $$ x = \dfrac{c(-9)+b(6)}{c+b} = \dfrac{3(-9)+13(5)}{3+13} = \dfrac{38}{16} = \dfrac{19}{8} $$

    $$ y = \dfrac{c(6)+b(3)}{c+b} = \dfrac{3(6)+13(3)}{3+13} = \dfrac{57}{16} $$

    $$ z = \dfrac{c(-3)+b(2)}{c+b} = \dfrac{3(-3)+13(2)}{3+13} = \dfrac{17}{16} $$

    Hence, point $$D$$ is $$ [\dfrac{19}{8},\dfrac{57}{16},\dfrac{17}{6}] $$ 
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now