Self Studies

Introduction to Three Dimensional Geometry Test - 32

Result Self Studies

Introduction to Three Dimensional Geometry Test - 32
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The ratio in which the plane $$x - 2y + 3z = 17$$ divides the line joining $$(-2, 4, 7)$$ and (3, -5, 8) is 
    Solution

  • Question 2
    1 / -0
    In the $$\Delta ABC$$ $$AB = \sqrt 2 ,AC = \sqrt {20} ,$$ B=$$(3,2,0)$$ and C=$$(0,1,4)$$ then the length of the median passing through A is 
    Solution
    $$D=$$ mid point of $$BC$$ (since $$BD$$ is median)
    $$D=\left(\dfrac{3+0}{2}, \dfrac{2+1}{2}, \dfrac{4+0}{2}\right)=\left(\dfrac{3}{2}, \dfrac{3}{2}, 2\right)$$
    $$BD=1/2BC=\dfrac{1}{2}\sqrt{(3-0)^2+(2-1)^2+(0-4)^2}$$
                      $$=\dfrac{1}{2}\sqrt{9+1+16}$$
    $$BD=\dfrac{1}{2}\sqrt{26}$$
    using appollonius theorem : 
    $$AB^2+AC^2=2(AD^2+(BD)^2)$$
    $$\Rightarrow AD^2=\dfrac{1}{2}[AB^2+AC^2]-(BD)^2$$
    $$AD^2=\dfrac{1}{2}[(\sqrt{2})^2+(\sqrt{20})^2]0-(BD)^2$$
    $$=\dfrac{1}{2}[22]-\dfrac{26}{4}=9/2$$
    $$\therefore AD^2=\dfrac{18}{4}\Rightarrow AD=\dfrac{3}{2}\sqrt{2}=\dfrac{3}{\sqrt{2}}$$
    $$\therefore$$ length of median through $$A=3/\sqrt{2}\ units$$.

  • Question 3
    1 / -0
    If a point C with y coordinate 2, lies on the line joining the points A(-1, -4, 5) and B(4, 6, -5), then find the coordinates of C.
    Solution
    Line joining $$A(-1,-4,5)$$ and $$B(4,6,-5)$$ is
    $$\cfrac{x-4}{-1-4}=\cfrac{y-6}{-4-6}=\cfrac{z-(-5)}{5-(-5)}\\ \cfrac{x-4}{-5}=\cfrac{y-6}{-10}=\cfrac{z+5}{10}\\ \Rightarrow\cfrac{x-4}{1}=\cfrac{y-6}{2}=\cfrac{z+5}{-2}=r$$
    $$\therefore$$ general c-ordinates of a point on this line is,
    $$(x,y,z)=(r+4,2r+6,-2r-5)$$
    y co-ordinates is given as$$2\Rightarrow y=2\\ \therefore 2r+6=2\\\Rightarrow r=-2$$
    $$\therefore (x,y,z)=(2,2,-1)$$
    Answer A
  • Question 4
    1 / -0
    The locus of a point P which moves such that $$PA^2-PB^2=2k^2$$ where A and B are $$(3, 4, 5)$$ and $$(-1, 3, -7)$$ respectively is 
    Solution
    $$P{A}^{2}-P{B}^{2}=2{k}^{2}$$
    $$\Rightarrow \left[{\left(x-3\right)}^{2}+{\left(y-4\right)}^{2}+{\left(z-5\right)}^{2}\right]-\left[{\left(x+1\right)}^{2}+{\left(y-3\right)}^{2}+{\left(z+7\right)}^{2}\right]=2{k}^{2}$$
    $$\Rightarrow \left(x-3+x+1\right)\left(x-3-x-1\right)+\left(y-4+y-3\right)\left(y-4-y+3\right)+\left(z-5+z+7\right)\left(z-5-z-7\right)=2{k}^{2}$$
    $$\Rightarrow \left(2x-2\right)\left(-4\right)+\left(2y-7\right)\left(-1\right)+\left(2z+1\right)\left(-12\right) =2{k}^{2}$$
    $$\Rightarrow -8x+8-2y+7-24z-24=2{k}^{2}$$
    $$\Rightarrow -8x-2y-24z-9=2{k}^{2}$$
    $$\Rightarrow 8x+2y+24z+9+2{k}^{2}=0$$

  • Question 5
    1 / -0
    The perimeter of the triangle formed by the points $$(1,0,0),(0,1,0),(0,0,1)$$ is 
    Solution
    Given points $$A(1, 0, 0), B(0, 1, 0), C(0, 0, 1)$$ is
    $$AB=\sqrt{1+1}=\sqrt{2}$$
    $$BC=\sqrt{1+1}=\sqrt{2}$$
    $$CA=\sqrt{1+1}=\sqrt{2}$$
    Perimeter of the triangle is $$AB+BC+CA=\sqrt{2}+\sqrt{2}+\sqrt{2}=3\sqrt{2}$$.
  • Question 6
    1 / -0
    The distance between the points $$P(x,\,-1)$$ and $$Q(3,\,2)$$ is $$5$$ units. Find the value of $$x$$.
    Solution
    Distance=$$\sqrt{(x_2-x_1)^2+(y_2-y_1)^2)}$$

    P$$=(x_1,y_1)=(x,-1)$$

    Q$$=(x_2,y_2)=(3,2)$$

    $$25=(3-x)^2+(2+1)^2$$

    $$25=(9+x^2-6x+9)$$

    $$x^2-6x-7=0$$

    $$x^2-7x+x-7=0$$

    $$x(x-7)+1(x-7)=0$$

    $$x=-1,7$$
  • Question 7
    1 / -0
    $$P$$ and $$Q$$ are points on the line joining $$A(-2,5)$$ and $$B(3,1)$$ such that $$AP=PQ=QB$$. Then, the distance of the midpoint of $$PQ$$ from the origin is
    Solution

  • Question 8
    1 / -0
    If A=(1,-2,-1) B=(4,0,-3)C=(1,2,-1),D=(2,-4,-5) Find the distance between AB and CD lines.
    Solution

  • Question 9
    1 / -0
    Find the co ordinates of points which trisect the line segment joining $$( 1 , - 2 )$$ and $$( - 3,4 )$$
    Solution

  • Question 10
    1 / -0
    If G is the centroid of $$\triangle ABC$$ and BC = 3, CA = 4, AB = 5 then BG =
    Solution

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now