Self Studies

Introduction to Three Dimensional Geometry Test - 36

Result Self Studies

Introduction to Three Dimensional Geometry Test - 36
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    lf $$OABC$$ is a tetrahedron such that the $$OA^{2}+BC^{2}=OB^{2}+CA^{2}=OC^{2}+AB^{2}$$, then which of the following is/are correct
    Solution
    $$OABC$$ is a tetrahedron such that  $$OA^{2}+BC^{2}=OB^{2}+CA^{2}=OC^{2}+AB^{2}$$
    Let $$O(0,0,0),A(x_{1},y_{1},z_{1}),B(x_{2},y_{2},z_{2}),C(x_{3},y_{3},z_{3})$$ are coordinates of vertices.
    $$OA^{2}+BC^{2}$$ = $$(x_{1}^{2}+y_{1}^{2}+z_{1}^{2})+((x_{3}-x_{2})^{2}+(y_{3}-y_{2})^{2}+(z_{3}-z_{2})^{2})$$
                      = $$(x_{1}^{2}+y_{1}^{2}+z_{1}^{2})+(x_{2}^{2}+y_{2}^{2}+z_{2}^{2})+(x_{3}^{2}+y_{3}^{2}+z_{3}^{2})-2(x_{2}x_{3}+y_{2}y_{3}+z_{2}z_{3})$$
    Similarly,
    $$OB^{2}+CA^{2}$$ = $$(x_{1}^{2}+y_{1}^{2}+z_{1}^{2})+(x_{2}^{2}+y_{2}^{2}+z_{2}^{2})+(x_{3}^{2}+y_{3}^{2}+z_{3}^{2})-2(x_{1}x_{3}+y_{1}y_{3}+z_{1}z_{3})$$
    $$OC^{2}+AB^{2}$$ = $$(x_{1}^{2}+y_{1}^{2}+z_{1}^{2})+(x_{2}^{2}+y_{2}^{2}+z_{2}^{2})+(x_{3}^{2}+y_{3}^{2}+z_{3}^{2})-2(x_{1}x_{2}+y_{1}y_{2}+z_{1}z_{2})$$
    $$\therefore$$ $$OA^{2}+BC^{2}=OB^{2}+CA^{2}\Rightarrow x_{2}x_{3}+y_{2}y_{3}+z_{2}z_{3} = x_{1}x_{3}+y_{1}y_{3}+z_{1}z_{3}$$
    $$\Rightarrow (x_{1}-x_{2})x_{3}+(y_{1}-y_{2})y_{3}+(z_{1}-z_{2})z_{3} = 0$$
    $$\Rightarrow (x_1-x_2)(x_3-0) + (y_1-y_2)(y_3-0)+(z_1-z_2)(z_3-0) = 0$$
    $$\Rightarrow \vec{AB}\cdot\vec{OC} = 0$$
    Hence, $$OC$$ is perpendicular to $$AB.$$ 
  • Question 2
    1 / -0
    The plane $$\displaystyle ax + by + cz + (-3) = 0$$ meet the co-ordinate axes in $$A, B, C$$. The centroid of the triangle is
    Solution
    For finding the coordinates of the point where the plane $$ax+by+cz-3=0$$ cuts the $$x$$ axis, 
    we equate $$y$$ and $$z$$ to zero.

    The point becomes $$\left(\dfrac{3}{a},0,0\right)$$
    similarily, the point on y axis becomes $$\left(0,\dfrac{3}{b},0\right)$$
    And that on z axis becomes $$\left(0,0,\dfrac{3}{c}\right)$$

    The centroid of the triangle formed by these points would be 
    $$\left(\dfrac {\dfrac{3}{a}+0+0}{3} , \dfrac {{0}+\dfrac{3}{a}+0}{3}  ,\dfrac{0+0+\dfrac{3}{c}}{3}\right)$$
    $$\therefore \left(\dfrac{1}{a},\dfrac{1}{b},\dfrac{1}{c}\right)$$
  • Question 3
    1 / -0
    $$ABCD$$ is a parallelogram. $$L$$ is a point on $$BC$$  which divides $$BC$$ in the ratio $$1 : 2$$. $$AL$$ intersects $$BD$$ at $$P$$. $$M$$ is a point on $$DC$$ which divides $$DC$$ in the ratio $$1 : 2$$ and AM intersects $$BD$$ in $$Q$$.

    Point $$P$$ divides $$AL$$ in the ratio
    Solution
    Given, $$BL:LC=1:2$$ and $$DM:MC=1:2$$

    Now, $$BL:BC=1:3$$

    Consider $$\triangle APD$$ and $$\triangle LPB$$

    $$\angle ADP=\angle LBP$$

    $$\angle APD=\angle BPL$$

    By AA corollary,

    $$\triangle APD \sim \triangle LPB$$

    $$\Rightarrow $$ Corresponding parts are proportional.

    $$\Rightarrow \dfrac{AP}{LP}=\dfrac{AD}{BL}$$

    $$\Rightarrow \dfrac{AP}{LP}=\dfrac{BC}{BL}$$   ($$\because AD=BC$$)

    $$\Rightarrow  \dfrac{AP}{LP}=3:1$$

  • Question 4
    1 / -0
    If the vertices of a triangle are $$(-1,6,-4),(2,1,1)$$ and $$(5,-1,0)$$ then the centroid of the triangle is
    Solution
     the centroid of the triangle is
    $$(\dfrac {x_1+x_2+x_3}{3},\dfrac{y_1+y_2+y_3}{3},\dfrac{z_1+z_2+z_3}{3})$$

    Thus by substituting the vertices we get 
    $$=(\dfrac{-1+2+5}{3},\dfrac{6+1-1}{3},\dfrac{-4+1+0}{3})$$

    $$=(\dfrac{6}{3},\dfrac{6}{3},\dfrac{-3}{3})$$
    $$\therefore$$ the centroid of the triangle is $$(2,2,-1)$$

  • Question 5
    1 / -0
    The coordinates of a point which is equidistant from the point $$(0,0,0),(a,0,0),(0,b,0)$$ and $$(0,0,c)$$ are given by
    Solution
    Let $$P(x,y,z)$$ be the required point.
    Then $$OP=PA=PB=PC$$
    Now $$OP=PA \Longrightarrow OP^2+PA^2 \Longrightarrow x^2+y^2+z^2$$

    = $$(x-a)^2+(y-0)^2+(z-0)^2 \Longrightarrow x=\dfrac{a}{2}$$
    Similarily, $$OP=PB=y=\dfrac{b}{2}$$ and $$OP=PC=z=\dfrac{c}{2}$$

    hence the coordinate of the required point are $$\left(\dfrac{a}{2},\dfrac{b}{2},\dfrac{c}{2}\right)$$
  • Question 6
    1 / -0
    If $$A= \left ( 0,0,2 \right ),B= \left (\sqrt{2},\sqrt{2},2 \right ),C= \left ( \sqrt{2},\sqrt{2},0 \right )$$ and $$D= \left ( \displaystyle \frac{8\sqrt{2}-20}{17},\frac{12\sqrt{2}+4}{17},\frac{20-8\sqrt{2}}{17} \right )$$, then $$ABCD$$ is a
    Solution
    Given points are, $$A= \left ( 0,0,2 \right ),B= \left (\sqrt{2},\sqrt{2},2 \right ),C=

    \left ( \sqrt{2},\sqrt{2},0 \right )$$ and $$D= \left ( \displaystyle

    \frac{8\sqrt{2}-20}{17},\frac{12\sqrt{2}+4}{17},\frac{20-8\sqrt{2}}{17}

    \right )$$

    Length $$AB = \sqrt{\sqrt{2}^2 + \sqrt{2}^2 + (2-2)^2} = 2$$
    Length $$BC = \sqrt{(\sqrt{2}-\sqrt{2})^2 + (\sqrt{2}-\sqrt{2})^2 + 2^2} = 2$$
    Length $$CD = \sqrt{\left(

    \dfrac{8\sqrt{2}-20}{17}-\sqrt{2}\right)^2 + \left(\dfrac{12\sqrt{2}+4}{17}-\sqrt{2}\right)^2 + \left(\dfrac{20-8\sqrt{2}}{17}\right)^2} = 2$$
    Length $$AD = \sqrt{\left(

    \dfrac{8\sqrt{2}-20}{17}\right)^2 + \left(\dfrac{12\sqrt{2}+4}{17}\right)^2 + \left(\dfrac{20-8\sqrt{2}}{17} - 2\right)^2} = 2$$

    Angle between two vectors $$\overline{AB} = p_{1}\hat{i}+q_{1}\hat{j}+r_{1}\hat{k} = \sqrt{2}\hat{i} + \sqrt{2}\hat{j} + 0\hat{k}$$ and $$\overline{BC} = p_{2}\hat{i}+q_{2}\hat{j}+r_{2}\hat{k} = 0\hat{i} + 0\hat{j} + 2 \hat{k}$$ is $$cos\theta = 0 \Rightarrow \theta = 90^o$$

    All sides are equal and angle between $$AB$$ and $$BC$$ is $$90^o$$, Hence, its a square.
  • Question 7
    1 / -0
    The equation of motion of a rocket are: $$x=2t,y=-4t,z=4t,$$ where the time $$t$$ is given in seconds and the coordinate of a moving point in kilometers. At what distance will the rocket be from the starting point $$O(0,0,0)$$ in $$10$$ seconds ?
    Solution
    Eliminating t from the given equation, we get the equation of the path $$\dfrac{x}{2}=\dfrac{y}{-4}=\dfrac{z}{4}=t $$
    Thus the path of the Rocket represents a straight line passing through the origin for $$t=10sec.$$
    we have $$x=20,y=-40,z=40$$
    Let $$\vec r=x\vec i+y\vec j+z\vec k$$
    $$\Longrightarrow |\vec r|=\sqrt{{x^2}+{y^2}+{z^2}}=\sqrt{400+1600+1600}=60km$$
  • Question 8
    1 / -0
    What is the distance in space between $$(1,0,5)$$ and $$(-3,6,3)$$?
    Solution
    The distance between the points $$(1,0,5)$$ and $$(-3,6,3)$$ is given below:
    $$D=\sqrt { \left( 3-5 \right) ^{ 2 }+\left( 6-0 \right) ^{ 2 }+\left( -3-1 \right) ^{ 2 } } $$
    $$=\sqrt { \left( -2 \right) ^{ 2 }+\left( 6 \right) ^{ 2 }+\left( -4 \right) ^{ 2 } } $$
    $$=\sqrt { 4+36+16 } =\sqrt { 56 } $$
    $$=2\sqrt { 14 }$$ 
  • Question 9
    1 / -0
    A triangle $$ABC$$ is placed so that the midpoints of its sides are on the $$x, y$$ and $$z$$ axes respectively. Lengths of the intercepts made by the plane containing the triangle on these axes are respectively $$\displaystyle \alpha ,\beta ,\gamma$$, then the coordinates of the centroid of the triangle $$ABC$$ are
    Solution
    Equation of the plane containing the triangle 
    $$ABC$$ is $$\displaystyle \frac{x}{\alpha }+\frac{y}{\beta }+\frac{z}{\gamma }=1$$
    which meets the axes in $$\displaystyle \left ( \alpha ,0,0 \right ),\left ( 0,\beta ,0 \right )$$ and $$\displaystyle \left ( 0,0,y \right )$$.
    Let the coordinates of $$A$$ be $$\displaystyle \left (x_1,y_1,z_1 \right )$$
    Since the middle point of $$AB$$ lies on the $$z$$-axis it is $$\displaystyle \left (0,0,\gamma \right )$$ and thus the coordinates of $$B$$ are $$\displaystyle \left (-x_1,-y_1,2\gamma -z_1 \right )$$
    Similarly the coordinates of $$C$$ are $$\displaystyle \left (-x_1,2\beta -y_1,-z_1 \right )$$
    So that the middle point of $$\displaystyle BC=\left ( -x_1,\beta -y_1,\gamma -z_1 \right ) \displaystyle =\left ( \alpha ,0,0 \right )$$
    $$\displaystyle \Rightarrow x_1=-\alpha ,y_1=\beta ,z_1=\gamma$$.
    And thus the coordinates of $$A$$ are $$\displaystyle \left ( -\alpha ,\beta ,\gamma  \right )$$
    Similarly the coordinates of $$B$$ are $$\displaystyle \left ( \alpha ,-\beta ,\gamma  \right )$$ and those of $$C$$ are $$\displaystyle \left ( \alpha ,\beta ,-\gamma  \right )$$.
    Hence, the coordinates of the centroid of the triangle $$ABC$$ are $$\displaystyle \left ( \dfrac {\alpha }{3},\dfrac {\beta }{3}, \dfrac {\gamma }{3} \right )$$
  • Question 10
    1 / -0
    Point A is $$\displaystyle a+2b,$$ and a divides AB in the ratio 2 : 3. The position vector of B is
    Solution
    Let us consider x be the position vector of B,
    then a divides AB in the ratio $$2 : 3$$ 

    $$a$$ =$$\dfrac {2x +3(a +2b)}{2+3}$$ 

    $$\Rightarrow x= a - 3b$$

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now