Self Studies

Introduction to Three Dimensional Geometry Test - 37

Result Self Studies

Introduction to Three Dimensional Geometry Test - 37
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    D(2,1,0),E(2,0,0),F(0,1,0)D(2, 1, 0), E(2, 0, 0), F(0, 1, 0) are mid point of the sides BC,CA,ABBC, CA, AB of Δ\Delta ABCABC respectively, The the centroid of Δ\DeltaABC is
    Solution
    Centroid of triangle coincide with the centroid of triangle formed by joing the mid-point of sides of triangle
    So, centroid of ABC=\triangle ABC = centroid of DEF\triangle DEF
    =(2+2+03,1+0+13,0+0+03)=\left(\dfrac{2+2+0}{3},\dfrac{1+0+1}{3},\dfrac{0+0+0}{3}\right)

    =(43,23,0)=\left(\dfrac{4}{3},\dfrac{2}{3},0\right)
  • Question 2
    1 / -0
    If P(x,y,x)P(x,y,x) is a point on the line segment joining Q(2,2,4)Q(2,2,4) and R(3,5,6)R(3,5,6) such that the projection of OP\overline { OP } on the axis are  135,195,265,\displaystyle \frac { 13 }{ 5 } ,\frac { 19 }{ 5 } ,\frac { 26 }{ 5 } , respectively, then PP divides QRQR in the ratio
    Solution
    Since OPOP has projection  135,195\displaystyle \frac { 13 }{ 5 } ,\frac { 19 }{ 5 } and  265\displaystyle \frac { 26 }{ 5 } on the coordinate axis,

    therefore OP=135 i+195j+265k\displaystyle OP=\frac { 13 }{ 5 }\vec  i+\frac { 19 }{ 5 } \vec j+\frac { 26 }{ 5 } \vec k.
    Suppose PP divides the join of Q(2,2,4)Q(2,2,4) and R(3,5,6)R(3,5,6) in the ratio λ:1\lambda :1.
    Then, the position vector of PP is
     (3λ+2λ+1 ) i+(5λ+2λ+1 )j+(6λ+4λ+1 )k\displaystyle \left( \frac { 3\lambda +2 }{ \lambda +1 }  \right)\vec  i+\left( \frac { 5\lambda +2 }{ \lambda +1 }  \right) \vec j+\left( \frac { 6\lambda +4 }{ \lambda +1 }  \right) \vec k

     135i+195 j+265 k=(3λ+2λ+1 )i+(5λ+2λ+1 )j+(6λ+4λ+1 )k\displaystyle \therefore \frac { 13 }{ 5 } \vec i+\frac { 19 }{ 5 }\vec  j+\frac { 26 }{ 5 }\vec  k=\left( \frac { 3\lambda +2 }{ \lambda +1 }  \right) \vec i+\left( \frac { 5\lambda +2 }{ \lambda +1 }  \right) \vec j+\left( \frac { 6\lambda +4 }{ \lambda +1 }  \right) \vec k

     3λ+2λ+1=135;5λ+2λ+1=195;6λ+4λ+1=265\displaystyle \Rightarrow \frac { 3\lambda +2 }{ \lambda +1 } =\frac { 13 }{ 5 } ;\frac { 5\lambda +2 }{ \lambda +1 } =\frac { 19 }{ 5 } ;\frac { 6\lambda +4 }{ \lambda +1 } =\frac { 26 }{ 5 }

    2λ=3\displaystyle \Rightarrow 2\lambda =3
    λ=32\Rightarrow \lambda =\dfrac { 3 }{ 2 }
  • Question 3
    1 / -0
    There are three points with position vectors  2a+3b+5c,a+2b+3c -2a+3b+5c, a+2b+3c and7ac 7a-c. What is the relation between the three points?
    Solution
    The relation between the three points are collinear
    Thus option A is correct answer 
  • Question 4
    1 / -0
    The plane ax+by+cz+d=0ax+by+cz+d=0 divides the line joining the points (x1,y1,z1)\left( { x }_{ 1 },{ y }_{ 1 },{ z }_{ 1 } \right) and (x2,y2,z2)\left( { x }_{ 2 },{ y }_{ 2 },{ z }_{ 2 } \right) in the ratio
    Solution
    Let the given plane meet the line joining the given points in (x3,y3,z3)\left( { x }_{ 3 },{ y }_{ 3 },{ z }_{ 3 } \right) .
    Then ax3+by3+cz3+d=0a{ x }_{ 3 }+b{ y }_{ 3 }+c{ z }_{ 3 }+d=0   ...(1)
    Also let the point (x3,y3,z3)\left( { x }_{ 3 },{ y }_{ 3 },{ z }_{ 3 } \right) divide the line joining the given points in the ratio m:nm:n
    Then
     x3=mx1+nx2m+n,y3=my1+ny2m+n\displaystyle { x }_{ 3 }=\frac { m{ x }_{ 1 }+n{ x }_{ 2 } }{ m+n } ,{ y }_{ 3 }=\frac { m{ y }_{ 1 }+n{ y }_{ 2 } }{ m+n } and  z3=mz1+nz2m+n\displaystyle { z }_{ 3 }=\frac { m{ z }_{ 1 }+n{ z }_{ 2 } }{ m+n }

    Substituting these values in (1), we get
     a(mx1+nx2m+n )+b(my1+ny2m+n )+c(mz1+nz2m+n )+d=0\displaystyle a\left( \frac { m{ x }_{ 1 }+n{ x }_{ 2 } }{ m+n }  \right) +b\left( \frac { m{ y }_{ 1 }+n{ y }_{ 2 } }{ m+n }  \right) +c\left( \frac { m{ z }_{ 1 }+n{ z }_{ 2 } }{ m+n }  \right) +d=0

    a(mx1+nx2)+b(my1+ny2)+c(mz1+nz2)+d(m+n)=0\Rightarrow a\left( m{ x }_{ 1 }+n{ x }_{ 2 } \right) +b\left( m{ y }_{ 1 }+n{ y }_{ 2 } \right) +c\left( m{ z }_{ 1 }+n{ z }_{ 2 } \right) +d\left( m+n \right) =0
    m(ax1+by1+cz1+d)+n(ax2+by2+cz2+d)=0\Rightarrow m\left( a{ x }_{ 1 }+b{ y }_{ 1 }+c{ z }_{ 1 }+d \right) +n\left( a{ x }_{ 2 }+b{ y }_{ 2 }+c{ z }_{ 2 }+d \right) =0

    nm=(ax1+by1+cz1+d) (ax2+by2+cz2+d) \displaystyle\Rightarrow \frac { n }{ m } =\frac { -\left( a{ x }_{ 1 }+b{ y }_{ 1 }+c{ z }_{ 1 }+d \right)  }{ \left( a{ x }_{ 2 }+b{ y }_{ 2 }+c{ z }_{ 2 }+d \right)  }

    Hence, option A.
  • Question 5
    1 / -0
    Let  a,b,cϵR\displaystyle a,b,c \epsilon R such that abc=pabc = p and qab=0qa-b = 0, where p p and qq are fixed positive number, then minimum distance of the point (a,b,c)(a, b, c) from origin in the three dimensional coordinate system is: 
    Solution
    We know that the distance between point (a,b,c)(a,b,c) and origin (0,0,0)(0,0,0) is:
     d=(a2+b2+c2)d= \sqrt({a^2+b^2+c^2)}.
    Using the inequality: AMGMAM\geq GM, for terms a2,b2a^2, b^2 and c2c^2:

     a2+b2+c23(abc)23\frac { { a }^{ 2 }+{ b }^{ 2 }+{ c }^{ 2 } }{ 3 } \ge \sqrt [ 3 ]{ { (abc) }^{ 2 } } .
    abc=pabc = p (Given)
        a2+b2+c23(p)23\implies \frac { { a }^{ 2 }+{ b }^{ 2 }+{ c }^{ 2 } }{ 3 } \ge { (p) }^{ \frac{2}{3} } .

    Taking square root on both sides of the inequality:

    a2+b2+c23p1/3 \sqrt { { a }^{ 2 }+{ b }^{ 2 }+{ c }^{ 2 } } \ge \sqrt { 3 } { p }^{ 1/3 }.

    Hence, Option C is correct.
  • Question 6
    1 / -0
    The set of points in space 4 inches from a given line and 4 inches from a given point on this line is ______ , if given point lies on the given line.

  • Question 7
    1 / -0
    If P(x,y,z)P\left( x,y,z \right) is a point on the line segment joining Q(2,2,4)Q\left( 2,2,4 \right) and R(3,5,6)R\left( 3,5,6 \right) such that the projections of OPOP on the axis are 135,195,265\cfrac { 13 }{ 5 } ,\cfrac { 19 }{ 5 } ,\cfrac { 26 }{ 5 } respectively, then PP divides QRQR in the ratio
    Solution
    Since, OP\overline { OP } has projections 135,195,265\cfrac { 13 }{ 5 } ,\cfrac { 19 }{ 5 } ,\cfrac { 26 }{ 5 } on the coordinate axes
    OP=135i^+195j^+265k^\therefore \overline { OP } =\cfrac { 13 }{ 5 } \hat { i } +\cfrac { 19 }{ 5 } \hat { j } +\cfrac { 26 }{ 5 } \hat { k }
    Suppose PP divides the line segment joining of Q(2,2,4)Q(2,2,4) and R(3,5,6)R(3,5,6) in the ratio λ:1\lambda:1
    then the position vector of PP is
    (3λ+2λ+1 )i^+(5λ+2λ+1 )j^+(6λ+4λ+1 )k^\left( \cfrac { 3\lambda +2 }{ \lambda +1 }  \right) \hat { i } +\left( \cfrac { 5\lambda +2 }{ \lambda +1 }  \right) \hat { j } +\left( \cfrac { 6\lambda +4 }{ \lambda +1 }  \right) \hat { k }
    135i^+195j^+265k^=(3λ+2λ+1 )i^+(5λ+2λ+1 )j^+(6λ+4λ+1 )k^\therefore \cfrac { 13 }{ 5 } \hat { i } +\cfrac { 19 }{ 5 } \hat { j } +\cfrac { 26 }{ 5 } \hat { k } =\left( \cfrac { 3\lambda +2 }{ \lambda +1 }  \right) \hat { i } +\left( \cfrac { 5\lambda +2 }{ \lambda +1 }  \right) \hat { j } +\left( \cfrac { 6\lambda +4 }{ \lambda +1 }  \right) \hat { k }
    λ=3/2\Rightarrow \lambda =3/2
    \therefore Required ratio in which PP divides QRQR is 3:23:2
  • Question 8
    1 / -0
    The points A(1,2,3);B(1,2,1);C(2,3,2)A(1,2,3); B-(-1,-2,-1); C(2,3,2) and D(4,7,6)D(4,7,6) form 
    Solution

  • Question 9
    1 / -0
    30 consider at three dimensional figure represented by xyz2=2xy{z^2} = 2, then its minimum distance from origin is 
    Solution

  • Question 10
    1 / -0
    The distances of the point P(1,2,3)P(1,2,3) from the coordinates axes are:
    Solution

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now