`
Self Studies

Introduction to Three Dimensional Geometry Test - 37

Result Self Studies

Introduction to Three Dimensional Geometry Test - 37
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    $$D(2, 1, 0), E(2, 0, 0), F(0, 1, 0)$$ are mid point of the sides $$BC, CA, AB$$ of $$\Delta$$ $$ABC$$ respectively, The the centroid of $$\Delta$$ABC is
    Solution
    Centroid of triangle coincide with the centroid of triangle formed by joing the mid-point of sides of triangle
    So, centroid of $$\triangle ABC =$$ centroid of $$\triangle DEF$$
    $$=\left(\dfrac{2+2+0}{3},\dfrac{1+0+1}{3},\dfrac{0+0+0}{3}\right)$$

    $$=\left(\dfrac{4}{3},\dfrac{2}{3},0\right)$$
  • Question 2
    1 / -0
    If $$P(x,y,x)$$ is a point on the line segment joining $$Q(2,2,4)$$ and $$R(3,5,6)$$ such that the projection of $$\overline { OP } $$ on the axis are $$\displaystyle \frac { 13 }{ 5 } ,\frac { 19 }{ 5 } ,\frac { 26 }{ 5 } ,$$ respectively, then $$P$$ divides $$QR$$ in the ratio
    Solution
    Since $$OP$$ has projection $$\displaystyle \frac { 13 }{ 5 } ,\frac { 19 }{ 5 } $$ and $$\displaystyle \frac { 26 }{ 5 } $$ on the coordinate axis,

    therefore $$\displaystyle OP=\frac { 13 }{ 5 }\vec  i+\frac { 19 }{ 5 } \vec j+\frac { 26 }{ 5 } \vec k$$.
    Suppose $$P$$ divides the join of $$Q(2,2,4)$$ and $$R(3,5,6)$$ in the ratio $$\lambda :1$$.
    Then, the position vector of $$P$$ is
    $$\displaystyle \left( \frac { 3\lambda +2 }{ \lambda +1 }  \right)\vec  i+\left( \frac { 5\lambda +2 }{ \lambda +1 }  \right) \vec j+\left( \frac { 6\lambda +4 }{ \lambda +1 }  \right) \vec k$$

    $$\displaystyle \therefore \frac { 13 }{ 5 } \vec i+\frac { 19 }{ 5 }\vec  j+\frac { 26 }{ 5 }\vec  k=\left( \frac { 3\lambda +2 }{ \lambda +1 }  \right) \vec i+\left( \frac { 5\lambda +2 }{ \lambda +1 }  \right) \vec j+\left( \frac { 6\lambda +4 }{ \lambda +1 }  \right) \vec k$$

    $$\displaystyle \Rightarrow \frac { 3\lambda +2 }{ \lambda +1 } =\frac { 13 }{ 5 } ;\frac { 5\lambda +2 }{ \lambda +1 } =\frac { 19 }{ 5 } ;\frac { 6\lambda +4 }{ \lambda +1 } =\frac { 26 }{ 5 } $$

    $$\displaystyle \Rightarrow 2\lambda =3$$
    $$\Rightarrow \lambda =\dfrac { 3 }{ 2 } $$
  • Question 3
    1 / -0
    There are three points with position vectors $$ -2a+3b+5c, a+2b+3c $$ and$$ 7a-c$$. What is the relation between the three points?
    Solution
    The relation between the three points are collinear
    Thus option A is correct answer 
  • Question 4
    1 / -0
    The plane $$ax+by+cz+d=0$$ divides the line joining the points $$\left( { x }_{ 1 },{ y }_{ 1 },{ z }_{ 1 } \right) $$ and $$\left( { x }_{ 2 },{ y }_{ 2 },{ z }_{ 2 } \right) $$ in the ratio
    Solution
    Let the given plane meet the line joining the given points in $$\left( { x }_{ 3 },{ y }_{ 3 },{ z }_{ 3 } \right) $$.
    Then $$a{ x }_{ 3 }+b{ y }_{ 3 }+c{ z }_{ 3 }+d=0$$   ...(1)
    Also let the point $$\left( { x }_{ 3 },{ y }_{ 3 },{ z }_{ 3 } \right) $$ divide the line joining the given points in the ratio $$m:n$$
    Then
    $$\displaystyle { x }_{ 3 }=\frac { m{ x }_{ 1 }+n{ x }_{ 2 } }{ m+n } ,{ y }_{ 3 }=\frac { m{ y }_{ 1 }+n{ y }_{ 2 } }{ m+n } $$ and $$\displaystyle { z }_{ 3 }=\frac { m{ z }_{ 1 }+n{ z }_{ 2 } }{ m+n } $$

    Substituting these values in (1), we get
    $$\displaystyle a\left( \frac { m{ x }_{ 1 }+n{ x }_{ 2 } }{ m+n }  \right) +b\left( \frac { m{ y }_{ 1 }+n{ y }_{ 2 } }{ m+n }  \right) +c\left( \frac { m{ z }_{ 1 }+n{ z }_{ 2 } }{ m+n }  \right) +d=0$$

    $$\Rightarrow a\left( m{ x }_{ 1 }+n{ x }_{ 2 } \right) +b\left( m{ y }_{ 1 }+n{ y }_{ 2 } \right) +c\left( m{ z }_{ 1 }+n{ z }_{ 2 } \right) +d\left( m+n \right) =0$$
    $$\Rightarrow m\left( a{ x }_{ 1 }+b{ y }_{ 1 }+c{ z }_{ 1 }+d \right) +n\left( a{ x }_{ 2 }+b{ y }_{ 2 }+c{ z }_{ 2 }+d \right) =0$$

    $$\displaystyle\Rightarrow \frac { n }{ m } =\frac { -\left( a{ x }_{ 1 }+b{ y }_{ 1 }+c{ z }_{ 1 }+d \right)  }{ \left( a{ x }_{ 2 }+b{ y }_{ 2 }+c{ z }_{ 2 }+d \right)  }$$

    Hence, option A.
  • Question 5
    1 / -0
    Let  $$\displaystyle a,b,c \epsilon R$$ such that $$abc = p$$ and $$qa-b = 0$$, where $$ p$$ and $$q$$ are fixed positive number, then minimum distance of the point $$(a, b, c)$$ from origin in the three dimensional coordinate system is: 
    Solution
    We know that the distance between point $$(a,b,c)$$ and origin $$(0,0,0)$$ is:
     $$d= \sqrt({a^2+b^2+c^2)}$$.
    Using the inequality: $$AM\geq GM$$, for terms $$a^2, b^2$$ and $$c^2$$:

     $$\frac { { a }^{ 2 }+{ b }^{ 2 }+{ c }^{ 2 } }{ 3 } \ge \sqrt [ 3 ]{ { (abc) }^{ 2 } } $$.
    $$abc = p$$ (Given)
    $$\implies \frac { { a }^{ 2 }+{ b }^{ 2 }+{ c }^{ 2 } }{ 3 } \ge { (p) }^{ \frac{2}{3} } $$.

    Taking square root on both sides of the inequality:

    $$ \sqrt { { a }^{ 2 }+{ b }^{ 2 }+{ c }^{ 2 } } \ge \sqrt { 3 } { p }^{ 1/3 }$$.

    Hence, Option C is correct.
  • Question 6
    1 / -0
    The set of points in space 4 inches from a given line and 4 inches from a given point on this line is ______ , if given point lies on the given line.

  • Question 7
    1 / -0
    If $$P\left( x,y,z \right) $$ is a point on the line segment joining $$Q\left( 2,2,4 \right) $$ and $$R\left( 3,5,6 \right) $$ such that the projections of $$OP$$ on the axis are $$\cfrac { 13 }{ 5 } ,\cfrac { 19 }{ 5 } ,\cfrac { 26 }{ 5 } $$ respectively, then $$P$$ divides $$QR$$ in the ratio
    Solution
    Since, $$\overline { OP } $$ has projections $$\cfrac { 13 }{ 5 } ,\cfrac { 19 }{ 5 } ,\cfrac { 26 }{ 5 } $$ on the coordinate axes
    $$\therefore \overline { OP } =\cfrac { 13 }{ 5 } \hat { i } +\cfrac { 19 }{ 5 } \hat { j } +\cfrac { 26 }{ 5 } \hat { k } $$
    Suppose $$P$$ divides the line segment joining of $$Q(2,2,4)$$ and $$R(3,5,6)$$ in the ratio $$\lambda:1$$
    then the position vector of $$P$$ is
    $$\left( \cfrac { 3\lambda +2 }{ \lambda +1 }  \right) \hat { i } +\left( \cfrac { 5\lambda +2 }{ \lambda +1 }  \right) \hat { j } +\left( \cfrac { 6\lambda +4 }{ \lambda +1 }  \right) \hat { k } $$
    $$\therefore \cfrac { 13 }{ 5 } \hat { i } +\cfrac { 19 }{ 5 } \hat { j } +\cfrac { 26 }{ 5 } \hat { k } =\left( \cfrac { 3\lambda +2 }{ \lambda +1 }  \right) \hat { i } +\left( \cfrac { 5\lambda +2 }{ \lambda +1 }  \right) \hat { j } +\left( \cfrac { 6\lambda +4 }{ \lambda +1 }  \right) \hat { k } $$
    $$\Rightarrow \lambda =3/2$$
    $$\therefore$$ Required ratio in which $$P$$ divides $$QR$$ is $$3:2$$
  • Question 8
    1 / -0
    The points $$A(1,2,3); B-(-1,-2,-1); C(2,3,2)$$ and $$D(4,7,6)$$ form 
    Solution

  • Question 9
    1 / -0
    30 consider at three dimensional figure represented by $$xy{z^2} = 2$$, then its minimum distance from origin is 
    Solution

  • Question 10
    1 / -0
    The distances of the point $$P(1,2,3)$$ from the coordinates axes are:
    Solution

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now