Self Studies

Limits and Deri...

TIME LEFT -
  • Question 1
    1 / -0

    Use limit properties to evaluate $$\displaystyle\lim_{x\to4}\dfrac{3x^2\tan \dfrac {\pi}{x}}x $$

  • Question 2
    1 / -0

    Evaluate $$\underset{x \rightarrow 3}\lim \sqrt[4] {x^3}$$ using the properties of limits.

  • Question 3
    1 / -0

    What is $$\displaystyle\lim _{ x\rightarrow 0 }{ \frac { \cos { x }  }{ \pi -x }  } $$ equal to?

  • Question 4
    1 / -0

    Find $$\dfrac{dy}{dx}$$ of function $$y= e^{x^3} +\dfrac{1}{2} \log x $$

  • Question 5
    1 / -0

    Differentiate: $$x^{100} + \sin x - 1$$

  • Question 6
    1 / -0

    Consider the differential equation $$\frac { d y } { d x } = \cos x$$ Then we observe that 

  • Question 7
    1 / -0

    $$x^{\frac{1}{2}} + 1=  t$$
    differentiate w.r.t. x

  • Question 8
    1 / -0

    $$\lim_{x\rightarrow\ 0}\dfrac{\sin7x}{\sin3x}$$ equals

  • Question 9
    1 / -0

    If a sequence $$< a_{n} >$$ is such that $$a_{1},a_{n+1}=\dfrac {2+3a_{n}}{1+2a_{n}}$$ and $$\displaystyle \lim_{n \rightarrow \infty}a_{n}$$ exists, then $$a_{n}$$ is equal to

  • Question 10
    1 / -0

    Evaluate the following limit :

    $$lim_{x\rightarrow 0} \dfrac{1-\cos 2x}{x^2}$$

Submit Test
Self Studies
User
Question Analysis
  • Answered - 0

  • Unanswered - 10

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
Submit Test
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now