Self Studies

Limits and Deri...

TIME LEFT -
  • Question 1
    1 / -0


    $$\displaystyle \lim_{x\rightarrow 0}\displaystyle \frac{3\sin x-\sin 3x}{x^{3}}$$=

  • Question 2
    1 / -0

    Solve:
    $$\displaystyle \lim_{x\rightarrow 0}\displaystyle \frac{3\tan x-\tan 3x}{2x^{3}}$$

  • Question 3
    1 / -0


    $$\displaystyle \lim_{x\rightarrow \dfrac{\pi }{2}}\displaystyle \dfrac{(\dfrac{\pi}{2}-x)\sec x}{cosecx}$$=

  • Question 4
    1 / -0

    $$\displaystyle \lim_{x\rightarrow 0}(\frac{\sin x-x}{x})(\sin\frac{1}{x})$$ is:

  • Question 5
    1 / -0


    $$\displaystyle \lim_{x\rightarrow \frac{\pi }{4}}\displaystyle \frac{\cos x-\sin x}{(\frac{\pi}{4}-x)(\cos x+\sin x)}$$=

  • Question 6
    1 / -0


    $$\displaystyle \lim_{x\rightarrow \dfrac{\pi }{2}}\displaystyle \frac{1-\sin x}{(\pi-2x)^{2}}$$=

  • Question 7
    1 / -0

    $$\displaystyle \lim_{x\rightarrow \infty }\frac{x+\sin x}{x+ \cos x}=$$

  • Question 8
    1 / -0


     lf $$\displaystyle { f }({ x })=\sqrt { \frac { { x }-\sin ^{ 2 }{ x }  }{ { x }+\cos { x }  }  } $$,then $$\displaystyle \lim _{ x\rightarrow \infty  } f(x)$$=

  • Question 9
    1 / -0

    lf $$ \mathrm{f}(\mathrm{x})=0$$ has a repeated root $$ \alpha$$, then another equation having $$\alpha$$ as root, is 

  • Question 10
    1 / -0

    $$\displaystyle \lim_{x\rightarrow \infty }x\displaystyle \cos\left(\frac{\pi}{8x}\right)\sin\left(\frac{\pi}{8x}\right)=$$

Submit Test
Self Studies
User
Question Analysis
  • Answered - 0

  • Unanswered - 10

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
Submit Test
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now