Self Studies

Limits and Deri...

TIME LEFT -
  • Question 1
    1 / -0

    Suppose the function $$f(x)-f(2x)$$ has the derivative $$5$$ at $$x=1$$ and derivative $$7$$ at $$x=2$$.The derivative  of the function $$f(x)-f(4x)$$ at $$x=1$$, has the value equal to 

  • Question 2
    1 / -0

    Which one of the following statements is true?

  • Question 3
    1 / -0

    If $$\displaystyle y=\frac { x }{ a+\displaystyle\frac { x }{ b+\displaystyle\frac { x }{ a+\displaystyle\frac { x }{ b+.....\infty  }  }  }  } $$, then $$\cfrac{dy}{dx} =$$

  • Question 4
    1 / -0

    Let $$f(x)=\sin x$$, $$g(x)=\left [ x+1 \right ]$$ and $$g(f(x))=h(x)$$, where [.] is the greatest integer function. Then $$h^+\left ( \displaystyle \dfrac{\pi }{2} \right )$$ is

  • Question 5
    1 / -0

    Find the solution of $$\displaystyle \frac{dy}{dx}= \frac{2x+2y-2}{3x+y-5}.$$

  • Question 6
    1 / -0

    Given : $$f(x)=4x^3-6x^2\cos2a+3x \sin 2a.\sin 6a+\sqrt{\ln (2a-a^2)}$$ then 

  • Question 7
    1 / -0

    $$\displaystyle \lim_{n\to\infty }\frac{n^{p}\sin ^{2}\left ( n! \right )}{n+1}$$, $$0<p<1$$, is equal to

  • Question 8
    1 / -0

    $$f\left( x \right)=\begin{cases} \sin { x } \qquad ;\qquad x\neq n\pi ,n=0,\pm 1,\pm 2,\pm 3..... \\ 2\qquad \qquad ;\qquad otherwise \end{cases}$$ and $$g\left( x \right) =\begin{cases} { x }^{ 2 }+1\qquad ;\qquad x\neq 0 \\ 4\qquad \qquad ;\qquad x=0 \end{cases}.$$ 

    Then $$\lim _{ x\rightarrow 0 }{ g\left( f\left( x \right)\right)} $$ is

  • Question 9
    1 / -0

    $$\displaystyle \lim_{x\rightarrow \dfrac{\pi}{2}}\dfrac{\left ( 1-\tan \dfrac{x}{2} \right )\left ( 1-\sin x \right )}{\left ( 1+\tan \dfrac{x}{2} \right )\left ( \pi -2x \right )^{3}}$$ is

  • Question 10
    1 / -0

    Let $$f\left ( x \right )=\begin{cases}\sin x, x\neq n\pi 
                       \\ 2,  x=n\pi \end{cases}$$, where $$n\epsilon \mathbb{Z}$$ and
    $$g\left ( x \right )=\begin{cases}x^{2}+1, x\neq 2 \\
                  3, x=2 \end{cases}$$.
    Then $$\displaystyle \lim_{x\to 0}g\left ( f\left ( x \right ) \right )$$ is

Submit Test
Self Studies
User
Question Analysis
  • Answered - 0

  • Unanswered - 10

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
Submit Test
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now