Self Studies

Limits and Derivatives Test - 20

Result Self Studies

Limits and Derivatives Test - 20
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If $$\displaystyle \lim_{x\rightarrow 0}(f(x)\:g(x))$$ exists for any functions $$f$$ and $$g$$ then
    Solution
    Take $$\displaystyle f(x) = \begin{cases} 1 & x> 0  \\ -1 & x< 0  \end{cases}$$ and $$\displaystyle g(x) = \begin{cases} 1 & x> 0  \\ -1 & x< 0  \end{cases}$$. Then $$f(x)\:g(x)=1$$ for $$x\neq 0$$. Hence $$\displaystyle \displaystyle \lim_{x\rightarrow 0}f(x)$$ and $$\displaystyle \lim_{x\rightarrow 0}g(x)$$ does not exist but $$\displaystyle\lim_{x\rightarrow 0}f(x)\:g(x)=1$$
    Hence, option 'D' is correct.
  • Question 2
    1 / -0
    $$\displaystyle \lim_{x\rightarrow\infty}\left(\frac{\sqrt{(1 - \cos x)+ \sqrt{(1 - \cos x)+ \sqrt(1 - \cos x)+...\infty) - 1}}}{x^2}\right)$$ equals to
    Solution
    Let  $$\sqrt{(1 - \cos x)+ \sqrt{(1 - \cos x)+ \sqrt{(1 - \cos x)+...\infty)}}}=y$$

    $$\Rightarrow y = \sqrt{(1 - \cos x) + y}$$

    $$\Rightarrow y^2 - y + (\cos x - 1) = 0$$

    $$\Rightarrow y = \displaystyle\frac{1 + \sqrt{5 - 4 \cos x}}{2}$$

    Now required limit is $$\lim_{x\rightarrow0}$$ $$\displaystyle\frac{1 + \sqrt{5 - 4 cosx - 1}}{2x^2}$$ $$=\displaystyle\frac{1}{2}$$
  • Question 3
    1 / -0
    $$\underset{x\rightarrow0}{lim}\displaystyle\frac{1-cos^{3}x+sin^{3}x+\ell n(1+x^{3})+\ell n(1+cos\,\,x)}{x^{2}-1+2\,cos^{2}x+tan^{4}x+sin^{3}x}$$ is equal to -
    Solution
    $$\displaystyle \underset { x\rightarrow 0 }{ lim } \frac { 1-cos^{ 3 }x+sin^{ 3 }x+\ell n(1+x^{ 3 })+\ell n(1+cos\, \, x) }{ x^{ 2 }-1+2\, cos^{ 2 }x+tan^{ 4 }x+sin^{ 3 }x } $$

    $$\displaystyle =\frac { 1-1+0+\ln { \left( 1+0 \right)  } +\ln { \left( 1+1 \right)  }  }{ 0-1+2+0+0 } =\ln { 2 } $$
  • Question 4
    1 / -0
    let a, b, c are non zero constant number then $$\lim_{r\rightarrow\infty}\displaystyle\frac{cos\displaystyle\frac{a}{r}-cos\displaystyle\frac{b}{r}cos\displaystyle\frac{c}{r}}{sin\displaystyle\frac{b}{r}sin\displaystyle\frac{c}{r}}$$ equals to
    Solution
    $$\displaystyle \lim _{ r\rightarrow \infty  }{ \dfrac { \cos { \dfrac { a }{ r } -\cos { \dfrac { b }{ r }  } \cos { \dfrac { c }{ r }  }  }  }{ \sin { \dfrac { b }{ r } \sin { \dfrac { c }{ r }  }  }  }  } $$

    $$\displaystyle =\lim _{ r\rightarrow \infty  }{ \dfrac { \cos { \dfrac { a }{ r } -\dfrac { 1 }{ 2 } \left( \cos { \left( \dfrac { b+c }{ r }  \right)  } +\cos { \left( \dfrac { b-c }{ r }  \right)  }  \right)  }  }{ \dfrac { 1 }{ 2 } \left( \cos { \left( \dfrac { b-c }{ r }  \right) -\cos { \left( \dfrac { b+c }{ r }  \right)  }  }  \right)  }  } $$

    By Applying L Hospital,s Rule

    $$\displaystyle =\lim _{ r\rightarrow \infty  }{ \dfrac { -a\sin { \dfrac { a }{ r } -\dfrac { 1 }{ 2 } \left( -\left( b+c \right) \sin { \left( \dfrac { b+c }{ r }  \right)  } -\left( b-c \right) \sin { \left( \dfrac { b-c }{ r }  \right)  }  \right)  }  }{ \dfrac { -1 }{ 2 } { \left( b-c \right)  }\sin { \left( \dfrac { b-c }{ r }  \right)  } +\dfrac { 1 }{ 2 } { \left( b+c \right)  }\sin { \left( \dfrac { b+c }{ r }  \right)  }  }  } $$              $$(here\,\,\,\dfrac{-1}{r^2}$$ 

    $$would\,\, cancel \,\,out\,\, from\,\, numerator \,\,and\,\, denominator)$$

    $$\displaystyle =\lim _{ r\rightarrow \infty  }{ \dfrac { { -a }^{ 2 }\cos { \dfrac { a }{ r } +\dfrac { 1 }{ 2 } \left( { \left( b+c \right)  }^{ 2 }\cos { \left( \dfrac { b+c }{ r }  \right) +{ \left( b-c \right)  }^{ 2 }\cos { \left( \dfrac { b-c }{ r }  \right)  }  }  \right)  }  }{ \dfrac { -1 }{ 2 } { \left( b-c \right)  }^{ 2 }\cos { \left( \dfrac { b-c }{ r }  \right)  } +\dfrac { 1 }{ 2 } { \left( b+c \right)  }^{ 2 }\cos { \left( \dfrac { b+c }{ r }  \right)  }  }  } $$

    $$\displaystyle =\dfrac { { b }^{ 2 }+{ c }^{ 2 }-{ a }^{ 2 } }{ 2bc } $$
  • Question 5
    1 / -0

    $$ \displaystyle f^{ ' }\left( x \right) =g\left( x \right) $$ and $$ \displaystyle g^{ ' }\left( x \right) =-f\left( x \right)$$ for all real x and $$ \displaystyle f\left( 5 \right) =2=f^{ ' }\left( 5 \right) $$ then $$ \displaystyle f^{ 2 }\left( 10 \right) +g^{ 2 }\left( 10 \right) $$ is -

    Solution

    Given, $$ \displaystyle f^{ ' }\left( x \right) =g\left( x \right)$$ and $$g^{ ' }\left( x \right) =-f\left( x \right)$$

    Now $$ \displaystyle \frac { d }{ dx } \left[ f^{ 2 }\left( x \right) +g^{ 2 }\left( x \right)  \right] =2f\left( x \right) f^{ ' }\left( x \right) +2g\left( x \right) g^{ ' }\left( x \right) $$

    $$ \displaystyle =2f\left( x \right) g\left( x \right) -2g\left( x \right) f\left( x \right) =0$$

    $$ \displaystyle \therefore \quad f^{ 2 }\left( x \right) +g^{ 2 }\left( x \right)$$ =constant

    $$ \displaystyle f^{ 2 }\left( 5 \right) +g^{ 2 }\left( 5 \right) = 4 + 4 = 8$$

    $$ \displaystyle \therefore \quad f^{ 2 }\left( 10 \right) +g^{ 2 }\left( 10 \right) $$ = 8

  • Question 6
    1 / -0
    Evaluate $$\displaystyle \lim_{n\rightarrow \infty }\left [ \frac{n!}{n^{n}} \right ]^{1/n}$$.
    Solution
    Let $$\displaystyle P=\lim_{n\rightarrow \infty }\left ( \frac{n!}{n^{n}} \right )^{1/n}$$

    $$\displaystyle P=\lim_{n\rightarrow \infty }\left ( \frac{1.2.3.4...n}{n.nnn....n} \right )^{1/n}$$

    $$\displaystyle P=\lim_{n\rightarrow \infty }\left ( \left ( \frac{1}{n} \right )\left ( \frac{2}{n} \right )\left ( \frac{3}{n} \right )...\left ( \frac{n}{n} \right ) \right )^{1/n}$$

    $$\displaystyle\Rightarrow ln P=\lim_{n\rightarrow \infty }\frac{1}{n}\left ( \log \left ( \frac{1}{n} \right )+\log \left ( \frac{2}{n} \right )+...\log \left ( \frac{n}{n} \right ) \right )$$

    $$\displaystyle P=\lim_{n\rightarrow \infty }\frac{1}{n}\sum_{r=1}^{n}\log \frac{r}{n}$$

    $$=\int_{0}^{1}lnxdx=\left [ xlnx-x \right ]^{1}_{0}$$

    $$=\displaystyle \left ( 0-1 \right )-\lim_{x\rightarrow 0 }\left ( xlnx \right )+0$$

    $$=\displaystyle -1-\lim_{x\rightarrow 0 }\frac{lnx}{1/x}=-1-\lim_{x\rightarrow 0 }\frac{1/x}{\left ( -1/x^{2} \right )}$$

    $$=\displaystyle -1-\lim_{x\rightarrow 0 }x=-1+0=-1\Rightarrow lnP=-1$$

    $$\displaystyle P=e^{-1}=1/e$$
  • Question 7
    1 / -0
    $$\displaystyle \frac{d}{dx}\left ( \tan ^{-1}\left ( \frac{a-x}{1+ax} \right ) \right )$$ equals if ax > -1
    Solution
    Let,  $$\displaystyle y=\tan ^{-1}\left ( \frac{a-x}{1+ax} \right )$$
    $$\displaystyle y=\tan ^{-1}(a)-\tan ^{-1}(x)$$
    $$\therefore \displaystyle \frac{dy}{dx}=-\frac{1}{1+x^2}$$
  • Question 8
    1 / -0
    If $$f(x) = \displaystyle \left | \cos x-\sin x \right |$$ then $$\displaystyle f'\left ( \dfrac{\pi}4 \right )$$ is equal to-
    Solution
    $$f\left( x \right) =\left| \cos { x } -\sin { x }  \right| $$
    $$\displaystyle =\begin{cases} \cos { x-\sin { x } \quad \quad x<\dfrac { \pi  }{ 4 }  }  \\ -\cos { x+\sin { x }  } \quad x>\dfrac { \pi  }{ 4 }  \end{cases}$$
    $$\displaystyle f'\left( x \right) =\begin{cases} -\sin { x } -\cos { x } \quad x<\dfrac { \pi  }{ 4 }  \\ +\sin { x+\cos { x } \quad x>\dfrac { \pi  }{ 4 }  }  \end{cases}$$
    Hence $$\displaystyle f'\left( \dfrac { \pi  }{ 4 }  \right) $$ does not exists.
  • Question 9
    1 / -0
    If $$\displaystyle y=\frac{1}{1+x^{\beta -\alpha}+x^{\gamma -\alpha}}+\frac{1}{1+x^{\alpha-\beta}+x^{\gamma -\beta }}+\frac{1}{1+x^{\alpha -\gamma }+x^{\beta-\gamma }}$$
    then $$\displaystyle \frac{dy}{dx}$$ is equal to-
    Solution
    $$\displaystyle y=\frac{1}{1+x^{\beta -\alpha}+x^{\gamma -\alpha}}+\frac{1}{1+x^{\alpha-\beta}+x^{\gamma -\beta }}+\frac{1}{1+x^{\alpha -\gamma }+x^{\beta-\gamma }}$$
    $$\displaystyle y=\frac{1}{\displaystyle 1+\frac{x^{\beta }}{x^{\alpha}}+\frac{x^{\gamma }}{x^{\alpha} }}+\frac{1}{{\displaystyle 1+\frac{x^{\alpha }}{x^{\beta}}+\frac{x^{\gamma }}{x^{\beta} }}}+\frac{1}{\displaystyle 1+\frac{x^{\alpha}}{x^{\gamma} }+\frac{x^{\beta} }{x^{\gamma }}}$$
    $$\displaystyle y=\frac{x^{\alpha }+x^{b}+x^{\gamma }}{x^{\alpha }+x^{\beta }+x^{\gamma }}=1$$
    $$\therefore \cfrac{dy}{dx}=0$$
  • Question 10
    1 / -0
    If $${ S }_{ n }$$ denotes the sum of $$n$$ terms of $$g.p$$. whose common ratio is $$r$$, then $$\displaystyle \left( r-1 \right) \frac { d{ S }_{ n } }{ dr } $$ is equal to
    Solution
    We have, $$\displaystyle {S}_{n}=\frac { a\left( { r }^{ n }+1 \right)  }{ r-1 } $$
    $$\Rightarrow \left( r-1 \right) { S }_{ n }={ ar }^{ n }-a$$
    Differentiating both sides with respect to $$r,$$ we get 
    $$\displaystyle \left( r-1 \right) \frac { { dS }_{ n } }{ dr } +{ S }_{ n }=na{ r }^{ n-1 }-0$$
    $$\displaystyle \Rightarrow \left( r-1 \right) \frac { { dS }_{ n } }{ dr } =na{ r }^{ n-1 }-{ S }_{ n }$$
    $$=n[n$$th term from of $$G.P.]$$ $$-{S}_{n}$$
    $$=n\left( { S }_{ n }-{ S }_{ n-1 } \right) -{ S }_{ n }$$
    $$=\left( n-1 \right) { S }_{ n }-n{ S }_{ n-1 }.$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now