Self Studies

Limits and Derivatives Test - 23

Result Self Studies

Limits and Derivatives Test - 23
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The limit of {1x1x1+1x2}\left\{\frac{1}{x}\sqrt{1-x}-\sqrt{1+\frac{1}{x^2}}\right\} as x0x\rightarrow 0
    Solution
    Let p(x)=1x1x,q(x)=1+1x2 p(x)=\cfrac { 1 }{ x } \sqrt { 1-x } ,q(x)=\sqrt { 1+\cfrac { 1 }{ { x }^{ 2 } }  }
    limx0+p(x) =limx0+1x1x =×110\lim _{ x\rightarrow { 0 }^{ + } }{ p\left( x \right)  } =\lim _{ x\rightarrow { 0 }^{ + } }{ \cfrac { 1 }{ x } \sqrt { 1-x }  } =\infty \times \sqrt { 1-10 }
    ==\infty
    limx0p(x) =×10=\lim _{ x\rightarrow { 0 }^{ - } }{ p\left( x \right)  } =-\infty \times \sqrt { 1-0 } =-\infty
    as x0+1x+x\rightarrow { 0 }^{ + }\quad \cfrac { 1 }{ x } \rightarrow +\infty
    x01xx\rightarrow { 0 }^{ - }\quad \cfrac { 1 }{ x } \rightarrow -\infty
    p(x)\Rightarrow p(x) is discontinuous as x0x\rightarrow 0
    Let f(x)=p(x)q(x)f\left( x \right) =p\left( x \right) -q\left( x \right)
    Since p(x)p\left( x \right) is discontinuous f(x)f\left( x \right) is also discontinuous by Algebra of continuous functions.
  • Question 2
    1 / -0
    If y=tan1(11+x+x2) +tan1(1x2+3x+2)+tan1(1x2+5x+6)+....+y = \tan^{-1} \left (\dfrac {1}{1 + x + x^{2}}\right ) + \tan^{-1} \left (\dfrac {1}{x^{2} + 3x + 2}\right ) + \tan^{-1} \left (\dfrac {1}{x^{2} + 5x + 6}\right ) + .... + upto nn terms then dydx\dfrac {dy}{dx} at x=0x = 0 and n=1n = 1 is equal to
    Solution

    y=tan1(11+x(x+1))+tan1(11+(x+1)(x+2))+tan1(11+(x+2)(x+3))+.....+tan1(11+(x+n1)(x+n))y= \tan^{-1} \left (\dfrac {1}{1 + x(x + 1)}\right ) + \tan^{-1}\left (\dfrac {1}{1 + (x + 1)(x + 2)}\right ) +\\ \quad\tan^{-1} \left (\dfrac {1}{1 + (x + 2)(x + 3)}\right ) + ..... + \tan^{-1} \left (\dfrac {1}{1 + (x + n - 1) (x + n)}\right )


    when n=1n = 1

    y=tan1(11+x(x+1))=tan1((x+1)x1+x(x+1))=tan1(x+1)tan1xy = \tan^{-1} \left (\dfrac {1}{1 + x(x + 1)}\right ) = \tan^{-1} \left (\dfrac {(x + 1) - x}{1 + x(x + 1)}\right ) = \tan^{-1} (x + 1) - \tan^{-1} x

    dydx=11+(x+1)211+x2dydx]x=0=11+111=121=12\Rightarrow \dfrac {dy}{dx} = \dfrac {1}{1 + (x + 1)^{2}} - \dfrac {1}{1 + x^{2}} \\ \therefore \dfrac {dy}{dx}]_{x = 0} = \dfrac {1}{1 + 1} - \dfrac {1}{1} = \dfrac {1}{2} - 1 = -\dfrac {1}{2}
  • Question 3
    1 / -0
    What is limx0 x2sin(1x)\displaystyle \lim_{x \rightarrow 0 }  x^2 \sin \left(\frac{1}{x}\right) equal to ? 
    Solution
    limx0x2sin(1x )  \displaystyle \lim _{ x\rightarrow 0 }{ { x }^{ 2 }\sin { \left( \cfrac { 1 }{ x }  \right)  }  }
    =02×sin(10 ) [1sin(1x ) 1]={ 0 }^{ 2 }\times \sin { \left( \cfrac { 1 }{ 0 }  \right)  } \quad \left[ -1\le \sin { \left( \cfrac { 1 }{ x }  \right)  } \le 1 \right]
    =0=0
  • Question 4
    1 / -0
    If f(x)=sinx cosx tanx x3x2x2x11f\left( x \right) =\begin{vmatrix} \sin { x }  & \cos { x }  & \tan { x }  \\ { x }^{ 3 } & { x }^{ 2 } & x \\ 2x & 1 & 1 \end{vmatrix}, then limx0f(x) x2 \displaystyle\lim _{ x\rightarrow 0 }{ \dfrac { f\left( x \right)  }{ { x }^{ 2 } }  } is
    Solution
    f(x)=sinxcosxtanxx3x2x2x11f(x)=sinx(x2x)cosx(x32x2)+tanx(x32x3)f(x)=x2sinxxsinxx3cosx+2x2cosxx3tanxf(x)x2=sinxxcosx+2cosxxtanxsinxxlimx0f(x)x2=limx0sinxlimx0xcosx+limx02cosxlimx0xtanxlimx0sinxxlimx0f(x)x2=00+201limx0f(x)x2=1f(x)=\begin{vmatrix} sinx & cosx & tanx \\ { x }^{ 3 } & { x }^{ 2 } & x \\ 2x & 1 & 1 \end{vmatrix}\\ \Longrightarrow f(x)=sinx({ x }^{ 2 }-x)-cosx({ x }^{ 3 }-2{ x }^{ 2 })+tanx({ x }^{ 3 }-2{ x }^{ 3 })\\ \Longrightarrow f(x)={ x }^{ 2 }sinx-xsinx-{ x }^{ 3 }cosx+2{ x }^{ 2 }cosx-{ x }^{ 3 }tanx\\ \Longrightarrow \dfrac { f(x) }{ { x }^{ 2 } } =sinx-xcosx+2cosx-xtanx-\dfrac { sinx }{ x } \\ \Longrightarrow \underset { x\longrightarrow 0 }{ lim } \dfrac { f(x) }{ { x }^{ 2 } } =\underset { x\longrightarrow 0 }{ lim } sinx-\underset { x\longrightarrow 0 }{ lim } xcosx+\underset { x\longrightarrow 0 }{ lim } 2cosx-\underset { x\longrightarrow 0 }{ lim } xtanx-\underset { x\longrightarrow 0 }{ lim } \dfrac { sinx }{ x } \\ \Longrightarrow \underset { x\longrightarrow 0 }{ lim } \dfrac { f(x) }{ { x }^{ 2 } } =0-0+2-0-1\\ \Longrightarrow \underset { x\longrightarrow 0 }{ lim } \dfrac { f(x) }{ { x }^{ 2 } } =1\\ \\
  • Question 5
    1 / -0
    limxπ2(π2xcosx)\displaystyle\lim_{x\rightarrow \frac{\pi}{2}}(\pi - 2x^{\cos x}) is equal to :
    Solution
    limxπ2(π2xcosx)\displaystyle\lim_{x\rightarrow \frac{\pi}{2}}(\pi - 2x^{\cos x}) 
    =π2(π2)cosπ2=\pi - 2\left(\dfrac{\pi}{2}\right)^{\cos \frac{\pi}{2}}
    =π2(π2)0=\pi-2\left(\dfrac{\pi}{2}\right)^{0}
    =π2=\pi-2
  • Question 6
    1 / -0
    The derivative of ln(x+sinx)ln(x+\sin x) with respect to (x+cosx)(x+\cos x) is
    Solution
    Let u=ln(x+sinx)u=ln(x+\sin x)   and   v=x+cosxv=x+\cos x
    Now,
    dudx=1x+sinx(1+cosx)\cfrac{du}{dx}=\cfrac1{x+\sin x}(1+\cos x) .... (i)(i)
    and dvdx=1sinx\cfrac{dv}{dx}=1-\sin x ..... (ii)(ii)
    Now, we can find derivative of uu with respect to vv by dividing (i)(i) by (ii)(ii), we get
    du/dxdv/dx=(1+cosx)(x+sinx)(1sinx)\cfrac{du/dx}{dv/dx}=\cfrac{(1+\cos x)}{(x+\sin x)(1-\sin x)}
    or, dudv=1+cosx(x+sinx)(1sinx)\cfrac{du}{dv}=\cfrac{1+\cos x}{(x+\sin x)(1-\sin x)}
    Hence, A is the correct option.
  • Question 7
    1 / -0
    Let   C(θ)=n=0cos(nθ)n!C(\theta)=\displaystyle\sum _{n=0}^{\infty}\dfrac{\cos(n\theta)}{n!}
    Which of the following statements is FALSE? 
    Solution
    C(0)=eC(0)=e
    C(π)=1eC(\pi)=\dfrac{1}{e}
    Hence, option A and B are correct

    C(θ)=n=0sinθ(n1)!C'(\theta)= -\displaystyle \sum_{n=0}^{\infty }\dfrac{\sin\theta }{(n-1)!}
    C(θ)=0C'(\theta)=0
    Therefore, option D is false because C(θ)=0C'(\theta) =0 for n=0n=0
  • Question 8
    1 / -0
    limxπ6sin(xπ6)32cosx\displaystyle\lim_{x\rightarrow\frac{\pi}{6}}\frac{\sin\left(x-\displaystyle\frac{\pi}{6}\right)}{\sqrt{3-2cos x}} is equal to :
    Solution
    limxπ 6 sin(xπ 6 )32cosx    \lim _{ x\rightarrow \frac { \pi  }{ 6 }  }{ \dfrac { \sin { (x-\cfrac { \pi  }{ 6 }  } ) }{ \sqrt { 3-2\cos { x }  }  }  }
    at  π6\cfrac { \pi }{ 6 }  we get the numerator as sin(xπ 6)=0\sin { (x-\cfrac { \pi  }{ 6 } ) } = 0  
    and the denominator as  32cosx =33   \sqrt { 3-2\cos { x }  } =\sqrt { 3-\sqrt { 3 }  }   
    So,it is not an indeterminant form as we have 033\dfrac{0}{\sqrt{3 - \sqrt{3}} }
    Hence the answer will be zero. 
  • Question 9
    1 / -0
    limxπ/4tanx1cos2x\displaystyle \lim_{x\rightarrow \pi/4} \dfrac {\tan x - 1}{\cos 2x} is equal to
    Solution
    limxπ/4tanx1cos2x=limh0tan(π4+h)1cos2(π4+h)\displaystyle \lim_{x\rightarrow \pi/4} \dfrac {\tan x - 1}{\cos 2x} = \displaystyle \lim_{h\rightarrow 0}\dfrac {\tan \left (\dfrac {\pi}{4} + h\right ) - 1}{\cos 2\left (\dfrac {\pi}{4} + h\right )}
    [x=π4+h]\left [\because x = \dfrac {\pi}{4} + h\right ]

    =limh0(1+tanh1tanh)1cos(π2+2h)= \displaystyle \lim_{h\rightarrow 0} \dfrac {\left (\dfrac {1 + \tan h}{1 - \tan h}\right ) - 1}{\cos \left (\dfrac {\pi}{2} + 2h\right )}

    =limh01+tanh1+tanhsin2h(1tanh)= \displaystyle \lim_{h\rightarrow 0} \dfrac {1 + \tan h - 1 + \tan h}{-\sin 2h (1 - \tan h)}
    =limh02tanh2sinhcosh(1tanh)= \displaystyle \lim_{h\rightarrow 0} \dfrac {-2\tan h}{2\sin h \cos h (1 - \tan h)}
    =limh01cos2h(1tanh)=1= \displaystyle \lim_{h\rightarrow 0} \dfrac {-1}{\cos^{2} h (1 - \tan h)} = -1
    Hence, option D is correct.
  • Question 10
    1 / -0
    The value of limxπ/62sin2x+sinx12sin2x3sinx1 \displaystyle \lim _{ x\rightarrow \pi /6 }{ \cfrac { 2\sin ^{ 2 }{ x } +\sin { x } -1 }{ 2\sin ^{ 2 }{ x } -3\sin { x } -1 }  } is
    Solution

    L=limxπ /62sin2x+sinx12sin2x3sinx1 L=2sin2(π 6 ) +sin(π 6 ) 12sin2(π 6 ) 3sin(π 6 ) 1L=2.14+1212.143.121=02=0L=\lim _{ x\rightarrow { \pi  }/{ 6 } }{ \dfrac { 2\sin ^{ 2 }{ x } +\sin { x } -1 }{ 2\sin ^{ 2 }{ x } -3\sin { x } -1 }  } \\ L=\dfrac { 2\sin ^{ 2 }{ \left( \dfrac { \pi  }{ 6 }  \right)  } +\sin { \left( \dfrac { \pi  }{ 6 }  \right)  } -1 }{ 2\sin ^{ 2 }{ \left( \dfrac { \pi  }{ 6 }  \right)  } -3\sin { \left( \dfrac { \pi  }{ 6 }  \right)  } -1 } \\ L=\dfrac { 2.\dfrac { 1 }{ 4 } +\dfrac { 1 }{ 2 } -1 }{ 2.\dfrac { 1 }{ 4 } -3.\dfrac { 1 }{ 2 } -1 } =\dfrac { 0 }{ -2 }= 0

    So option DD is correct

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now