Self Studies

Limits and Derivatives Test - 30

Result Self Studies

Limits and Derivatives Test - 30
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    $$\lim _{ x\rightarrow \infty  }{ \frac { 1 }{ x } \int _{ 0 }^{ x }{ \left( \sqrt { { t }^{ 2 }+5t } -t \right) dt }  }$$ 
    Solution

  • Question 2
    1 / -0
    The value of $$\displaystyle \lim _{ x\rightarrow a }{ \frac { \sqrt { x-b } -\sqrt { a-b }  }{ { x }^{ 2 }-{ a }^{ 2 } }  } \left( a>b \right) $$ is
    Solution
    We have,
    $$\displaystyle \lim _{ x\rightarrow a }{ \frac { \sqrt { x-b } -\sqrt { a-b }  }{ { x }^{ 2 }-{ a }^{ 2 } } }$$

    This is the $$\dfrac{0}{0}$$ form.
    Apply L-hospital rule,
    $$\lim_{x\to a}\dfrac{\dfrac{1}{2\sqrt {x-b}}-0}{2x-0}$$
    $$\lim_{x\to a}\dfrac{1}{4x\sqrt {x-b}}$$
    $$=\dfrac{1}{4a\sqrt {a-b}}$$

    Hence, this is the answer.
  • Question 3
    1 / -0
    $$\lim _ { x \rightarrow 0 } \dfrac { ( 27 + x ) ^ { 1 / 3 } - 3 } { 9 - ( 27 + x ) ^ { 2 / 3 } }$$  equals :
    Solution
    $$\underset { x\rightarrow 0 }{ lt } \dfrac { { \left( 27+x \right)  }^{ 1/3 }-3 }{ 9-{ \left( 27+x \right)  }^{ 2/3 } } $$
    $$=\underset { x\rightarrow 0 }{ lt } \dfrac { \dfrac { 1 }{ 3 } { \left( 27+x \right)  }^{ -2/3 } }{ \dfrac { -2 }{ 3 } { \left( 27+x \right)  }^{ -1/3 } } $$
    $$=\underset { x\rightarrow 0 }{ lt } \dfrac { -1 }{ 2 } \dfrac { { \left( 27+x \right)  }^{ 1/3 } }{ { \left( 27+x \right)  }^{ 2/3 } } $$
    $$=\dfrac { -1 }{ 2 } \left( \dfrac { 3 }{ 9 }  \right) ,\quad \dfrac { -1 }{ 6 } $$    [A]
  • Question 4
    1 / -0
    A curve in the $$1^{st}$$ quadrant passes through $$(1,1)$$. Its drifferential equation is $$(y-xy^{2})dx+(x+x^{2}y^{2})dy=0$$. Hence the equation of the curve is 
    Solution

  • Question 5
    1 / -0
    if cos y = x cos (a + y ), then $$\dfrac{dy}{dx}$$ =
    Solution

  • Question 6
    1 / -0
    If $$(cos x)^y = (sin y)^x$$, then $$\dfrac{dy}{dx}$$ =
    Solution

  • Question 7
    1 / -0
    The derivative of $$\tan^{-1}\left[\dfrac{\sin x}{1+\cos x}\right]$$ with respect to $$\tan^{-1}\left[\dfrac{\cos x}{1+\sin x}\right]$$ is 
    Solution
    We have,
    $$\begin{array}{l} { y_{ 1 } }={ \tan ^{ -1 }  }\left( { \dfrac { { \sin  x } }{ { 1+\cos  x } }  } \right)  \\ ={ \tan ^{ -1 }  }\left( { \dfrac { { 2\sin  \dfrac { x }{ 2 }\cos  \dfrac { x }{ 2 }  } }{ { 1+2{ { \cos   }^{ 2 } }\dfrac { x }{ 2 } -1 } }  } \right)  \\ ={ \tan ^{ -1 }  }\left( { \tan  \dfrac { x }{ 2 }  } \right)  \\ { y_{ 1 } }=\dfrac { x }{ 2 }  \\ \dfrac { { d{ y_{ 1 } } } }{ { dx } } =\dfrac { 1 }{ 2 }  \\ { y_{ 2 } }={ \tan ^{ -1 }  }\left( { \dfrac { { \cos  x } }{ { 1+\sin  x } }  } \right)  \\ \dfrac { { d{ y_{ 2 } } } }{ { dx } } =\dfrac { 1 }{ { 2\left( { 1+\sin  x } \right)  } } .-\left( { 1+\sin  x } \right)  \\ =\dfrac { 1 }{ 2 }  \\ \dfrac { { d{ y_{ 1 } } } }{ { dx } } .\dfrac { { dx } }{ { d{ y_{ 2 } } } } =\dfrac { 1 }{ 2 } \times -2 \\ \dfrac { { d{ y_{ 1 } } } }{ { d{ y_{ 2 } } } } =-1 \\ Hence, \\ option\, \, B\, \, is\, \, correct\, \, answer. \end{array}$$
  • Question 8
    1 / -0
    $$\underset { x\rightarrow 1 }{ Lim } \left[ { \left[ \frac { 4 }{ { x }^{ 2 }-{ x }^{ -1 } } -\frac { { 1-3x+x }^{ 2 } }{ { 1-x }^{ 3 } }  \right]  }^{ -1 }+\frac { 3\left( { x }^{ 4 }-1 \right)  }{ { x }^{ 3 }-{ x }^{ -1 } }  \right] =$$
    Solution
    $$\displaystyle\lim_{x\rightarrow 1}\left[\left[\dfrac{4}{x^2-x^{-1}}-\dfrac{1-3x+x^2}{1-x^3}\right]^{-1}+\dfrac{3(x^4-1)}{x^3-x^{-1}}\right]$$
    $$\displaystyle\lim_{x\rightarrow 1}\left[\left[\dfrac{4x}{x^3-1}+\dfrac{1-3x+x^2}{x^3-1}\right]^{-1}+\dfrac{3(x^4-1)}{x^3-x^{-1}}\right]$$
    $$\displaystyle\lim_{x\rightarrow 1}\left[\left[\dfrac{x^2+x+1}{x^3-1}\right]^{-1}+\dfrac{3(x^4-1)x}{x^4-1}\right]$$
    $$\displaystyle\lim_{x\rightarrow 0}\left[\dfrac{(x-1)(x^2+x+1)}{x^2+x+1}+3x\right]$$ as $$(x^3-1)2(x-1)(x^2+x+1)$$
    $$\displaystyle\lim_{x\rightarrow 1}[(x-1)+3x]=(1-1)+3(1)=3$$
    Answer$$=3$$.

  • Question 9
    1 / -0
    $$\displaystyle \underset { x\rightarrow 0 }{ lim } \ \ \frac { ({ 1-\cos2x) }^{ 2 } }{ 2x \tan x-x \tan2x } $$ is :
    Solution
    Let  $$L=\displaystyle \lim_{x\rightarrow 0} \frac { (1 - cos 2x)^2}{2x \tan x - x \tan 2x}= \lim_{x\rightarrow 0} \frac {( 2 sin x)^2}{2x \tan x- \frac {x 2 \tan x}{1 - \tan^2 x}}$$

    $$=\displaystyle \lim_{x\rightarrow 0}  \frac { { 4 sin^4 x}}{\frac{1 - \tan^2 x}{2 x \tan x - 2x \tan^3 x - 2x \tan x}}$$

    $$=\displaystyle \lim_{x\rightarrow 0}  \frac {4 sin ^4 x ( 1 - \tan^2 x)}{- 2 x \tan^3 x}$$

    $$=\displaystyle \lim_{x\rightarrow 0}  \frac {2 sin^4 x}{-x \frac {sin^3 x}{cos x}}( 1 - \tan^2 x)$$

    $$\displaystyle =- 2 \lim_{x\rightarrow 0}  \left \{ \frac {sin x . cos^3 x}{x} (1 \tan^2 x) \right \}$$

    $$ \displaystyle = -2 \left ( \lim_{x\rightarrow 0}  \frac { sin x}{x} \right ) \lim_{x\rightarrow 0}  \left \{ cos^3 x ( 1 - \tan^2 x) \right \}$$

    $$L\displaystyle  = -2(1)(1)$$

    $$L\displaystyle  = -2$$

  • Question 10
    1 / -0
    The differential of $$f(x)=\sqrt{\dfrac{2-x}{2+x}}$$ at $$x=0$$ and $$\delta x=0.15$$ is
    Solution

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now